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SUMMARY

This work aims to reduce the inference and training costs of deep learning models by utilizing

early exit networks. In particular, we introduce four algorithms:

1. E2CM, a simple and lightweight early exit algorithm that reduces the inference cost. In a

separate line of work, we also show how early exit networks can be combined with model

pruning.

2. CBT, an algorithm to further decrease the inference cost of early exit semantic segmentation

networks.

3. EEPrune, a novel dataset pruning algorithm that uses early exit networks to reduce training

cost.

4. Class-aware EE LLM, a novel weight initialization algorithm for early exit large language

models to accelerate pre-training.
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CHAPTER 1

INTRODUCTION

Deep learning is advancing rapidly with the constant development of new, state-of-the-art

models. The performance increase in the models are often attributed to increase in their size

and training them for longer on larger datasets. However, these two factors result in a rise in

the inference and training costs. This rise may not be sustainable in the long run and is thus a

significant problem that needs to be addressed, especially for resource-constrained settings.

One way of reducing the inference cost is adding early exit layers to the model. By doing so,

the computation will be terminated sooner for a sample that can be classified correctly at an

early exit layer. However, existing early exit methods are not suitable for resource-constrained

settings. The reason for that is three fold. First, existing early exit methods add layers that

require gradient based training to the model, which increases the model complexity. Second,

the added layers have to be trained jointly with the model and this increases the computational

cost. Finally, existing methods introduce more hyper-parameters to the model, such as number,

location and size of the exit layers. This makes hyper-parameter tuning more challenging and

expensive. To overcome these limitations and reduce the inference cost of early exit models, we

introduce Early Exit via Class Means (E2CM), a simple and lightweight early exit algorithm. We

compare E2CM against various early exit methods on different models for numerous supervised

and unsupervised tasks, and demonstrate its effectiveness in reducing the inference cost.

1
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In a separate line of work, we demonstrate how early exit networks can be combined with

other efficiency optimization techniques such as model pruning. We explore whether the order of

pruning the backbone and the exit layers impacts performance, and find that pruning everything

simultaneously yields the best outcome.

We also design Class Based Thresholding (CBT) to decrease the inference cost of early exit

semantic segmentation networks further in settings where the number of classes is high and

the classes have different intrinsic difficulties. Specifically, CBT utilizes the neural collapse

phenomenon by calculating the mean of the prediction probabilities of pixels in the training set,

for each class. Then, CBT transforms the probabilities to thresholds using a set of formulas,

resulting in a different threshold for each class. We demonstrate the effectiveness of CBT by

comparing it to existing methods on various datasets.

In order to reduce the training costs, we resort to dataset pruning. Dataset pruning addresses

the high training costs of deep learning models by discarding redundant samples and keeping, for

example, only the difficult samples for training. Existing dataset pruning methods typically train

an ensemble of models or train a single model fully for assessing the redundancy of a training

sample. This is particularly undesirable for resource-constrained devices due to the large memory

footprint of the ensemble and high computational demands of full training. For this reason, we

introduce Early Exit Prune (EEPrune), a novel dataset pruning algorithm that utilizes early exit

networks to discard redundant samples from the dataset. We demonstrate EEPrune’s superiority

against existing dataset pruning methods using various models on different datasets.
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Finally, we propose a novel class-aware weight initialization technique for early exit large

language models with the purpose of accelerating pre-training. Our design utilizes the neural

collapse phenomenon combined with a Gaussian mixture model for the distribution of feature

vectors at a given layer. Specifically, we calculate the average of token representations at the

early exit point and use the resulting vectors together with class probabilities for initializing the

early exit vectors. The next token prediction accuracy of our class-aware initialization technique

is up to five times higher than other baselines at epoch zero and matches or surpasses them in

later epochs throughout the pre-training process.

1.1 Thesis Contributions

1.1.1 E2CM: Early Exit via Class Means for Efficient Supervised and Unsupervised

Learning

• We design E2CM, a simple and lightweight early exit algorithm to reduce inference cost of

deep learning models. E2CMdoes not add trainable layers, does not need gradient based

training, and does not need any additional hyper-parameters.

• We show E2CM’s feasibility for unsupervised learning tasks, whereas the existing methods

focus only on supervised learning tasks.

• We compare E2CMagainst various early exit methods on different models for numerous

supervised and unsupervised tasks and demonstrate its effectiveness in reducing the

inference cost.



4

1.1.2 Pruning Early Exit Neural Networks

• We combine two methods to reduce the computational cost: Pruning and early exit

networks.

• We explore whether the order of pruning the backbone and the exit layers impacts perfor-

mance, and find that pruning everything simultaneously yields the best outcome.

• We show the processes of pruning and early exit can potentially be separated without

significant penalty in performance.

1.1.3 Class Based Thresholding in Early Exit Semantic Segmentation Networks

• We design CBT, a new algorithm to further decrease the inference cost of early exit semantic

segmentation networks.

• We demonstrate how CBT performs better in settings where the number of classes is high

and the classes have different intrinsic difficulties.

• We demonstrate the effectiveness on CBT by comparing it to existing methods on various

datasets.

1.1.4 Dataset Pruning Using Early Exit Networks

• We use early exit networks, an inference time reduction technique, for the task of dataset

pruning, a training time reduction technique.

• We introduce EEPrune, a novel dataset pruning algorithm capable of maintaining baseline

accuracy and occasionally surpassing it, while consuming significantly less energy compared

to other dataset pruning methods.
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• We shed light on the impact of exit location on the performance of identifying easy samples.

• We conduct an extensive evaluation of dataset pruning methods and assess their ability to

maintain a balanced representation across different classes during the pruning process.

1.1.5 Class-aware Initialization of Early Exits for Pre-training Large Language

Models

• We propose a novel class-aware weight initialization technique for early exit large language

models with the purpose of accelerating pre-training.

• We make connections to the optimal detection problem for the vector AWGN channel from

the digital communications domain.

• We show that our method performs better than baselines in both “no freezing” and “freezing”

settings for various model families and datasets.



CHAPTER 2

E2CM: EARLY EXIT VIA CLASS MEANS FOR EFFICIENT

SUPERVISED AND UNSUPERVISED LEARNING

Part of this chapter has been pusblished as A. Görmez, V. R. Dasari and E. Koyuncu, "E2CM: Early Exit via Class Means for Efficient

Supervised and Unsupervised Learning," 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022.

Overview: State-of-the-art neural networks with early exit mechanisms often need considerable

amount of training and fine-tuning to achieve good performance with low computational cost. We

propose a novel early exit technique, Early Exit Class Means (E2CM), based on class means of samples.

Unlike most existing schemes, E2CM does not require gradient-based training of internal classifiers and it

does not modify the base network by any means. This makes it particularly useful for neural network

training in low-power devices, as in wireless edge networks. We evaluate the performance and overheads

of E2CM over various base neural networks such as MobileNetV3, EfficientNet, ResNet, and datasets

such as CIFAR-100, ImageNet, and KMNIST. Our results show that, given a fixed training time budget,

E2CM achieves higher accuracy as compared to existing early exit mechanisms. Moreover, if there are

no limitations on the training time budget, E2CM can be combined with an existing early exit scheme

to boost the latter’s performance, achieving a better trade-off between computational cost and network

accuracy. We also show that E2CM can be used to decrease the computational cost in unsupervised

learning tasks.

Keywords: Neural networks, early exit, class means.
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2.1 Introduction

Modern deep learning models require a vast amount of computational resources to effectively

perform various tasks such as object detection [3], image classification [4], machine translation [5]

and text generation [6]. Deploying deep learning models to the edge, such as to mobile phones or

the Internet of Things (IoT), thus becomes particularly challenging due to device computation

and energy limitations [7,8]. Moreover, the law of diminishing returns applies to the computation-

performance trade-off [9]: The increase in the performance of a deep learning model is often

marginal as compared to the increase in the amount of computation.

One of the primary reasons behind traditional deep learning models’ high computation

demand is their tunnel-like design. In fact, traditional models apply the same sequence of

operations to any given input. However, in many real world datasets, certain inputs may consist

of much simpler features as compared to other inputs [9]. In such a scenario, it becomes desirable

to design more efficient architectures that can exploit the heterogeneous complexity of dataset

members. This can be achieved by introducing additional exit points to the models [10–15]. These

exit points prevent simple inputs to traverse the entire network, reducing the computational cost

of inference.

Despite reduced inference time, existing early exit neural network architectures require

additional training and fine-tuning for the early exit points, which increases the training time

[9, 11, 12]. This side-effect is undesirable for scenarios in which the training has to be done

in a low-power device. An ideal solution is a plug-and-play approach that does not require

gradient-based training and performs well. In this work, we propose such an early-exit mechanism,
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Figure 1. Confusion matrix of the classifications done according to the nearest class mean on
CIFAR-10 training set. From left to right, top to bottom; the results belong to the first

convolutional layer, 1st, 3rd, 10th, 15th and 30th residual block of ResNet-152.

Early Exit Class Means (E2CM), based on the class means of input samples for the image

classification task. By averaging the layer outputs for each class at every layer of the model, class

means are obtained. During inference, output of a layer is compared with the corresponding

class means using Euclidean distance as the metric. If the output of the layer is close enough

to a class mean, the execution is stopped and the sample exits the network. In fact, as seen in

Figure 1, some samples can be classified easily at early stages of the network by just considering

a “nearest class mean” decision rule, suggesting the potential effectiveness of our method for

reducing computational cost.

A practical use case for E2CM is when a large, expensive-to-train model is broadcast to edge

devices with limited and heterogeneous computation capabilities. In such a scenario, different
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devices may train the E2CM model at different FLOP operating points depending on their

computation capabilities or power limitations.

One other practical scenario for E2CM is transfer learning and fine tuning, where the training

has to be done on low-power edge device with a local dataset that is different from the dataset

the base network was trained on. In order to keep the battery usage minimum on the edge

device, the training time may be limited. The advantage of E2CM is that it does not need any

gradient-based training like Shallow-Deep Networks [12], therefore it is more suitable for transfer

learning and fine tuning on low-power devices.

To the best of our knowledge, E2CM is the first early exit mechanism that does not require

gradient-based training and does not modify the original network by any means. Moreover,

E2CM does not have a hyper-parameter for early exit locations unlike existing schemes. These

features make E2CM simpler to use and easier to deploy on low-power devices. While using

class means as the only early exit mechanism requires just a single feed forward pass, existing

early exit methods reaches the same performance after training for multiple epochs (i.e. multiple

forward and backward passes), which suggests our method is more agile and powerful yet simpler.

Moreover, combining E2CM with the existing mechanisms that require gradient-based training

achieves a better trade-off in terms of computation cost and network accuracy. In addition to

its benefits in the supervised learning setting, E2CM is also the first technique that shows the

feasibility of early exits in the unsupervised learning setting.

We show the effectiveness of E2CM on CIFAR-10 [16], CIFAR-100 [16], ImageNet [17], Tiny

ImageNet [18], KMNIST [19], Fashion-MNIST [20] and MNIST [21] datasets using ResNet-18 [4],
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ResNet-152 [4], WideResNet-101 [22], MobileNetV3Large [23] and EfficientNet-B0 [24] models.

Using class means as the sole decision mechanism results in 50% better accuracy or 50% faster

inference time compared to the existing early exit techniques in the literature. Also, when

combined with the state-of-the-art, we increase the accuracy by 6% without doing further

computation; or decrease the inference time by 33% with a negligible loss in accuracy. We

also show that it is possible to decrease the computational cost while doing clustering with

autoencoders on MNIST and Fashion-MNIST [20,21]. In particular, E2CM saves on computation

by 60%, while the loss in unsupervised clustering accuracy [25] is marginal. We also evaluate the

computational and memory overheads of E2CM, and show that they are practically low even for

large datasets and/or models.

2.2 Related Work

Conditional computation: Our work is related to the area of conditional computation [26–28],

where several small networks are trained to control the computation flow of one deep neural

network. For this purpose, adding gates between the blocks of residual networks have been

proposed [28, 29]. During inference, these gates allow the input to skip unnecessary blocks, thus

saving computation time. However, the gates have to be trained from scratch jointly with the

base network. Also, the locations of the gates have to be determined explicitly, which result in

increased number of hyper-parameters. Unlike these methods, E2CM does not modify the base

network and does not require gradient-based training.

Early exit networks: One of the earliest works that explicitly propose the idea of early exiting

is [10], where the authors consider adding a cascade of linear layers after convolutional layers
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as control blocks. Rather than just linear layers, adding branches consisting of convolutional

layers to the original model has also been studied [11]. A significant drawback of this method is

that the branches increase the computational cost due to convolutional layers. In a more recent

study, internal classifiers (ICs) consisting of a feature reduction layer and a single linear layer

are added after certain layers in the network [12,15]. The methods presented in these studies

modify the original network by adding linear or convolutional layers. Moreover, they require

gradient updates to train those layers. Also, an implicit hyper-parameter is the locations of the

early exit points. E2CM is better suited for low-power applications compared to existing studies

since we do not modify the original model, do not require gradient based training and additional

hyper-parameters. Another novelty of E2CM is the ability to extend to unsupervised learning

tasks. Existing early exit methods focus only on supervised learning.

In addition to layer level early exits, a network level early exit mechanism has been introduced

in [9]. Both the layer level exit and the network level exit require decision functions to be inserted

between the layers and networks. This type of architecture freezes the weights of the original

model, and then trains the decision functions one by one using weighted binary classification.

The drawback of this approach is such an alternative optimization, which may consume a lot of

time and energy when there are many decision functions to optimize.

Multi-resolution networks: One other idea to reduce the inference time computational cost

of neural networks is the usage of multi-resolution features to facilitate early exiting [30–32].

While this idea works well, these methods focus only on supervised learning tasks and they

design new architectures for that purpose. Moreover, the locations of early exits are restricted to



12

the last few blocks of the sub-network [31]. Rather than designing new architectures, E2CM is a

plug-and-play method: We focus on taking off-the-shelf networks such as MobileNetV3Large [23]

and reducing the inference time without modifying and retraining the model for both supervised

and unsupervised learning tasks.

Few-shot learning: Intermediate layer outputs have been used for classification in few-shot

and one-shot learning settings in the past [33–36]. These studies are closely related to the area

of metric learning. The closest work to E2CM is prototypical networks, in which prototypes

for each class are computed [35, 37]. However, none of those approaches aim to reduce the

computation cost, rather they either try to remedy the problem of classifying unseen classes or

explore unsupervised domain adaptation [37,38].

Neural collapse: E2CM is also related to the phenomenon of neural collapse [39]. It is known

that as the inputs go deeper in a neural network, the classes are separated better from each

other as a result of multiple nonlinearities, and the samples begin to concentrate [40, 41]. E2CM

exploits this phenomenon with the main idea of stopping the execution as soon as the sample is

close enough to a concentration point i.e., a class mean.

2.3 Early Exit Class Means

In this section, we introduce E2CM in the context of image classification. The scheme extends

to different classification tasks in the same manner. Let (x
(i)
0 , y(i)) ∈ D be an image-label pair

from the dataset D consisting of N samples and K distinct classes, where y(i) ∈ {1, 2, . . . ,K}

and i ∈ {1, 2, . . . , N}. We denote the network F with M layers as a sequence l1, l2, . . . , lM . Let

ŷ(i) denote the prediction of the network, x(i)j denote the output of layer j, and ŷ
(i)
j denote the
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prediction in case the input exits the network after layer j, for j = 1, 2, . . . ,M . The input-output

relationships of the network F can be expressed as

x
(i)
j = lj(x

(i)
j−1), j = 1, 2, . . . ,M. (2.1)

2.3.1 Class Means

The input to E2CM is the network F trained on D. The network F is not modified by any

means. Therefore, we can obtain the class means for each class at each layer easily by just a

forward pass. This is especially useful when the training time budget is fixed. Let Sk denote the

set of samples whose ground-truth label is k, and ckj denote the mean of the output of layer j for

class k. In other words, let

ckj = 1
|Sk|

∑
n∈Sk

x
(n)
j . (2.2)

The Euclidean distance between a layer output x
(i)
j and K class means ckj is then computed via

dk
(i)

j = ||x(i)j − ckj ||2, k ∈ {1, 2, . . . ,K}. (2.3)

After calculating dk
(i)

j at each layer for every sample in the dataset, we normalize the distances

for each class as

dk
(i)

j :=
dk

(i)

j

1
N

∑N
i=1 d

k(i)
j

, k ∈ {1, 2, . . . ,K}. (2.4)
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Finally, the normalized distances are converted to probabilities of input belonging to a class

in order to perform inference. This is done using the softmax function as

P (ŷ
(i)
j = k) = softmax(−dk(i)j ). (2.5)

During inference, the decision of exiting after lj or moving forward to lj+1 is made according

to a threshold value Tj . If the largest softmax probability is greater than the specified threshold

Tj , execution is stopped and the class with the largest softmax probability is predicted. In other

words, if

max(softmax(−dk(i)j )) > Tj , (2.6)

then the network predicts

ŷ
(i)
j = argmax

k
(softmax(−dk(i)j )). (2.7)

Otherwise, the input moves forward to the next layer. In the worst case, execution ends at

the last layer of the network. The full procedure of our method is shown in Algorithm 1.

E2CM performs differently according to different set of threshold values. We use binary

search to reach target number of FLOPs on training set. If the thresholds result in a higher

number of FLOPs than the target number of FLOPs, they are decreased to encourage early exits.

Else, they are increased to encourage moving deeper in the layers. Later, same threshold values

are used on the test set during the inference phase for that target number of FLOPs.
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Algorithm 1 Early Exit Class Means (E2CM)
Input: Trained network layers lj , dataset D, thresholds Tj

if training then
for j = 1 to M do

x
(i)
j = lj(x

(i)
j−1)

Calculate class means ckj , k ∈ {1, 2, . . . ,K}
end for

end if
if inference then

for j = 1 to M do
x
(i)
j = lj(x

(i)
j−1)

Compute dk
(i)

j = ||x(i)j − ckj ||2
Normalize dk

(i)

j as in (Equation 2.4).
if max(softmax(−dk(i)j )) > Tj then

Early exit with argmaxk(softmax(−dk(i)j )).
end if

end for
end if

2.3.2 Combination of Class Means with Existing Schemes

E2CM can boost the performance of existing early exit schemes. Existing methods use only

x
(i)
j as the input to the internal classifiers and decide to exit early based on either the entropy of

class probabilities or the largest class probability [11,12]. We propose feeding the distances to the

class means (dk(i)j ) as additional inputs to the internal classifiers by simple concatenation, which

improves the performance. In addition, during inference, if the jth internal classifier decides to

move to the next layer, E2CM is consulted. If E2CM suggests exiting early, the prediction of the

jth internal classifier is returned and the input exits early. Hence, an input can move to the next
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layer if and only if it receives approval from both the internal classifier (which can be based on

any existing scheme) and our simple E2CM.

2.3.3 Extension to Unsupervised Learning

E2CM can be used for clustering as well. As an example, we consider Deep Embedding

Clustering (DEC) [25] and focus on the task of jointly learning representations and cluster

assignments. In DEC, there is only one clustering layer, and it is at the end of the encoder layers.

This makes it impractical for low-power clustering, because the architecture is like a tunnel with

only one exit at the end. We propose adding multiple clustering layers as early exits in order to

decrease the computational cost.

2.4 Results

We validate the effectiveness of E2CM on CIFAR-10 [16], CIFAR-100 [16], ImageNet [17], Tiny

ImageNet [18], KMNIST [19], Fashion-MNIST [20] and MNIST [21] datasets using ResNet-18 [4],

ResNet-152 [4], WideResNet-101 [22], MobileNetV3Large [23] and EfficientNet-B0 [24] models.

Datasets: CIFAR-10 and CIFAR-100 datasets consist of 50000 training and 10000 test images,

and have 10 and 100 classes respectively with equal amount of samples for each class. ImageNet

dataset has 1000 classes and consists of 1.2 million training images and 50000 validation images.

Tiny Image-Net dataset consists of 100000 training, 10000 validation and 10000 test images

of 200 classes. KMNIST, Fashion-MNIST and MNIST datasets consist of 60000 training and

10000 test images. While MNIST is a dataset of handwritten digits, KMNIST consists of 10

Hiragana characters and Fashion-MNIST consists of clothing images. KMNIST, Fashion-MNIST

and MNIST datasets consist of grayscale images unlike other datasets described above.
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Models and training: We use ResNet-18, ResNet-152, WideResNet-101, MobileNetV3Large

and EfficientNet-B0 models for our supervised learning experiments. For all models, we use

the same data augmentation scheme and the hyper-parameter values stated in [28] for training.

For our unsupervised learning experiments, we use the same network architecture and training

parameters stated in [25].

Experiments: We run experiments in four settings. First, we fix the training time budget and

compare E2CM with the existing early exit methods in terms of network accuracy and floating

point operations (FLOPs) performed during inference. The second experiment is similar to the

first one: Training time budget is fixed, but now for a fine tuning task. In the third experiment,

we remove the training time budget. We allow the full training of the internal classifiers, and

we combine E2CM with internal classifiers and compare it with existing methods. The fourth

experiment is for unsupervised learning, and we generate the accuracy-FLOPs curve to evaluate

the effectiveness of E2CM.

2.4.1 E2CM Under a Fixed Training Time Budget

In the fixed training time budget setting, we compare E2CM with existing methods in two

ways. First, E2CM is compared with Shallow-Deep Networks [12] and BranchyNet [11], which

are trained for only one epoch since E2CM requires only a single forward pass. We do not include

here the Bolukbasi-Wang-Dekel-Saligrama (BWDS) method [9], because in this method, each

decision function requires a separate training. Hence, we cannot train an entire BWDS network

with many decision functions using only one epoch.
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We use the procedure described in [12] and add 6 ICs after the layers which correspond to

the 15%, 30%, 45%, 60%, 75%, 90% of the entire network in terms of FLOPs for Shallow-Deep

Networks. For BranchyNet, we add 2 branches to the original network as in [11]. The first branch

is after the first convolutional layer, and the second branch is after the layer that corresponds

to 1/3 of the whole network in terms of FLOPs. For E2CM, we allow early exiting after every

ResNet block for simplicity.

To reach a target number of FLOPs, we first initialize the threshold vector by drawing M

numbers uniformly at random from [0, 1]. The jth component of the threshold vector corresponds

to Tj in Algorithm 1 and is utilized at layer lj of the neural network. Then, the softmax values

are obtained for each layer on training set as in Equation 2.5. Therefore, only one pass on training

set is needed to optimize the thresholds. We update the threshold vector until we reach the

target number of FLOPs using binary search at each component and alternating optimization: If

the thresholds give larger number of FLOPs than the target FLOP, the thresholds are decreased

for the next iteration. Otherwise, they are increased. Binary search is guaranteed to converge as

the (average) FLOPS are monotonic with respect to the thresholds.

In this paper, we normalize the FLOPs to the base model. Thus, the base model without any

early exits is assumed to cost 1 FLOP. To obtain the trade-off between accuracy and FLOPs for

early exit models synthesized from a base model, the above threshold optimization process is

repeated on the training set for target FLOPs ranging from 0.0 to 1.0 with 0.001 granularity.

We then compute the convex hull of the resulting 1000 points in the FLOPs-Accuracy plane.

This yields the best performing thresholds on the training set. We use the best thresholds on
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Figure 2. Comparison of E2CM with existing methods under fixed training time budget of one
epoch for ResNet-152 (left) and WideResNet-101 (middle) on CIFAR-10 (top) and KMNIST
(bottom). ResNet-18 for CIFAR-10 is shown at top right, and ResNet-152 for CIFAR-100 is

shown at bottom right.

test set and form the FLOPs-Accuracy curves. Each point on a given curve represents one

threshold vector. Points are connected via lines: The performance of any point on any given line

is achievable simply via time sharing of the models that correspond to line endpoints.

We show the performance of E2CM for a fixed training time budget in Figure 2. The horizontal

axis represents the FLOPs normalized the base model, and the vertical axis represents the accuracy.

As shown in the figure, E2CM generally outperforms all existing schemes. Specifically, using

E2CM as the only decision mechanism achieves 50% better accuracy or 50% faster inference

time for certain cases. This is because E2CM uses the trained weights of the original vanilla

model, which generalizes well to the dataset and can be used for classification. On the other



20

hand, internal classifiers require further training. Therefore, they require more time to be ready

for the task of classification.

Secondly, we still consider a fixed training time budget, but this time we allow the separate

training of decision functions in the BWDS method. As suggested by the authors, there are

6 early exit points, hence 6 decision functions. We train each decision function for 1 epoch,

resulting in 6 separate epochs. To make a fair comparison, we train Shallow-Deep Networks

and BranchyNet for 6 epochs as well. We combine E2CM with Shallow-Deep Networks. By

doing so, E2CM rectifies the decisions made by Shallow-Deep Networks. At every exit point of

Shallow-Deep Networks, if the decision is made in favor of exiting early at the exit point, E2CM

is consulted. If E2CM disagrees with Shallow-Deep Networks, early exit does not happen at that

exit point.

From Table I, it can be seen that combining E2CM with Shallow-Deep Networks (SDN)

performs better than other methods and can increase the performance by 25% when the number of

classes is large. Table I shows accuracies at ϕ ∈ {0.15, 0.20, 0.25, 0.30} FLOPs only, because after

0.30 FLOPs, the accuracy stays the same, which indicates that we do not need the tunnel-like

design of traditional networks.

Overheads: There are two main sources of overhead for our E2CM scheme that should be

considered. One is the extra computation overhead to calculate the distances to class means. In

this context, we would like to note that the results in Figure 2 already include the computation

overhead as the FLOPs are normalized to the base model. The superior performance of E2CM

suggest that the computation overhead is very low. In fact, for the WideResNet-101 and
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TABLE I

COMPARISON OF E2CM WITH EXISTING METHODS UNDER A FIXED TRAINING
TIME BUDGET OF SIX EPOCHS. SYMBOL ϕ REPRESENTS THE FLOP CONSTRAINT.

Model, Method Accuracy
Dataset ϕ=0.15 ϕ=0.20 ϕ=0.25 ϕ=0.30

ResNet-152,
E2CM+SDN 77% 85% 87% 87%

CIFAR-10
SDN 66% 75% 85% 87%

BWDS 77% 82% 84% 86%
BranchyNet 57% 57% 57% 57%

ResNet-152,
E2CM+SDN 34% 46% 52% 54%

CIFAR-100
SDN 20% 24% 27% 30%

BWDS 33% 40% 42% 44%
BranchyNet 24% 25% 26% 26%

WideResNet-101,
E2CM+SDN 81% 87% 88% 88%

CIFAR-10
SDN 70% 79% 86% 88%

BWDS 82% 85% 87% 88%
BranchyNet 56% 56% 57% 57%

WideResNet-101,
E2CM+SDN 85% 92% 96% 96%

KMNIST
SDN 63% 74% 96% 96%

BWDS 88% 90% 92% 94%
BranchyNet 80% 82% 83% 84%

ResNet-152 models and CIFAR-10 dataset, our experiments have shown that the computational

complexity of an early exit block is only around 0.007 FLOPs. For CIFAR-100 dataset, the

overhead is about 0.057 FLOPs. An issue in the case of a very large number of classes is that

the computational complexity of E2CM scales linearly with the number of classes. This is also

evident with the roughly 10-fold scaling (from 0.007 to 0.057) of the computational complexity

as soon as one considers CIFAR-100 instead of CIFAR-10. One solution that we will explore

in the next set of experiments is to utilize max pooling to reduce the class means’ dimensions.
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We will show that this technique can effectively reduce the computation overhead while still

preserving the advantages of E2CM over existing schemes.

We have also evaluated the memory overhead of our E2CM scheme, which is important for

edge computing devices with limited resources. Note that, as compared to the base model, E2CM

requires extra memory for storing the class means vectors. For ResNet-152, WideResNet-101

and ResNet-18 on CIFAR-10 models, we have found that our E2CM needs 0.417 MB, 0.43 MB

and 0.242 MB of space to store the class means for an exit location respectively. These numbers

are averages over different layers of the network. Considering there are respectively 50, 35 and 8

ResNet blocks for these models, E2CM results in a memory overhead of 20.85 MB, 15.05 MB

and 1.94 MB respectively. The models themselves respectively require 222 MB, 476 MB and

42.17 MB, so the fractional memory overhead is at most 9.4%. Similar to the computation

overhead, the memory overhead of E2CM increases linearly with the number of classes. Thus,

for ResNet-152 on CIFAR-100, one will need 0.417× 10 = 4.17 MB to store the class means for

a layer on average, increasing the overhead to 9.4%× 10 = 94%. We show in the following that

the aforementioned max pooling method can also alleviate memory requirements.

2.4.2 E2CM Under a Fixed Training Time Budget: Fine Tuning

In this experiment, we consider a scenario where a model has to be trained on a low-power

edge device. Also, the local training dataset is different from the dataset that the base model

was trained on. A key motivation for this widely-used transfer learning setup is user privacy. We

compare the early exit methods using EfficientNet-B0 and MobileNetV3Large as base models on

ImageNet and Tiny ImageNet datasets. We randomly sample 50 and 10 images per class for
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Figure 3. Comparison of E2CM with existing methods under fixed training time budget of one
epoch for the fine tuning task on ImageNet (left, middle) and Tiny ImageNet (rightt) datasets

using EfficientNet-B0 (left), MobileNetV3Large (middle, right) models.

ImageNet and Tiny ImageNet and use the resulting subsets for fine tuning. For all methods,

only one early exit location is used that corresponds to roughly 20% of the entire network in

terms of FLOPs. To overcome the memory overhead of E2CM, the output dimensions of the exit

layer is downsampled from 14x14x80 to 7x7x10 via max pooling. We follow the same threshold

selection procedure as described in 2.4.1.

As seen from Figure 3, E2CM outperforms all competing methods under a fixed training

time budget for the fine tuning task. This supports the hypothesis that E2CM generalizes better

to the dataset compared to other early exit techniques under a training time budget. This result

is important because the networks on edge devices may have to train their own version of the

base model for data/model privacy reasons. Moreover, E2CM requires the fewest FLOPs for the

same accuracy, which translates to reduced battery usage. Moreover, the cost of communication

to the cloud may be very high.
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Thanks to the max pooling technique, the overall computation overhead of E2CM is only

around 0.001 FLOPs on the ImageNet dataset for both EfficientNet-B0 and MobileNetV3Large.

In terms of memory overhead, if MobileNetV3Large is used, E2CM needs 1.87 MB and 0.87 MB to

store the class means for ImageNet and Tiny ImageNet datasets respectively. For EfficientNet-B0

on ImageNet, the overhead is 1.87 MB. Considering MobileNetV3Large requires 21.5 MB and

17.2 MB of memory for ImageNet and Tiny ImageNet datasets, respectively, and EfficientNet-B0

needs 16.9 MB for ImageNet, the memory overhead is at most 11%. These results show that

E2CM does not have a large memory or computation footprint even for datasets with a large

number of classes. We believe that the memory and computation costs can be further reduced

by complementary methods such as quantization and pruning [42,43].

2.4.3 E2CM with Unlimited Training

In this experiment, we remove the training time budget. We combine E2CM with Shallow-

Deep Networks and compare this combination against Shallow-Deep Networks, the BWDS

method, and BranchyNet.

We train the internal classifiers of our merger of E2CM and Shallow-Deep for 100 epochs.

The corresponding high computational complexity may not be desirable for low-power devices.

We follow the same threshold selection procedure described above. During inference, the decision

of early exit is made according to both the E2CM and the ICs.

We train BranchyResNet-152 and BranchyWideResNet-101 for 300 and 250 epochs respec-

tively. We use stochastic gradient descent with batch size of 256. The loss of the branches

are added up to the loss of the final layer and the weighted average is taken as prescribed
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TABLE II

COMPARISON OF EARLY EXIT METHODS
Model, Method Accuracy
Dataset ϕ=0.15 ϕ=0.20 ϕ=0.25 ϕ=0.30

ResNet-152,
E2CM+SDN 82.4% 86.4% 88.5% 88.8%

CIFAR-10
SDN 80% 86% 88.4% 88.8%

BWDS 82% 84.1% 86% 87.7%
BranchyNet 80% 80% 80% 80%

ResNet-152,
E2CM+SDN 94.1% 96.2% 96.8% 96.8%

KMNIST
SDN 83.9% 94% 96.4% 96.6%

BWDS 94.5% 96% 96.5% 96.6%
BranchyNet 86% 87.5% 88.2% 89.5%

WideResNet-101,
E2CM+SDN 84% 88% 88.6% 88.8%

CIFAR-10
SDN 82% 88% 88.5% 88.8%

BWDS 85.8% 86.5% 87.8% 88.2%
BranchyNet 81.9% 82.5% 84.9% 85%

WideResNet-101,
E2CM+SDN 94.1% 96.5% 97.1% 97.2%

KMNIST
SDN 84.1% 94% 96% 97%

BWDS 93.8% 94.2% 95% 96%
BranchyNet 89% 90.1% 90.2% 90.2%

in [11]. We have trained multiple combination of weights, and found that [1/6, 1/4, 1] achieves

the best performance. For thresholds, we follow the same procedure, but this time the range of

values is [0, logK] where K = 10, because we consider the entropy of the predictions to make a

decision [11].

Since the task of training decision functions in the BWDS method is a binary classification

task (i.e., early exit or not) they converge rather quickly. We separately train the classifiers that

come after the decision functions as well. We use pooling and single linear layer for these, as

suggested by the authors.



26

As shown in Table II, combining E2CM with internal classifiers achieves a better trade-off

between the computational cost and network accuracy. For low computational budget, E2CM

improves the accuracy by up to 6%. We also observe that BranchyNet suffers from training

the network with the branches jointly. These branches hurt the overall performance. Moreover,

convolutional layers in the branches add a significant computational cost without a considerable

gain in accuracy. Also, although early exit mechanisms with decision functions like the BWDS

method provide decent performance, experimental results show that threshold based early exit

mechanisms perform better. In other words, making a decision about early exit and then

performing classification fares worse than the threshold-based strategies where classification and

exiting decisions are melted into the same pot.

According to Table II, we can conclude that the consulting mechanism between the E2CM

and the internal classifiers is generally beneficial. The common decision that is reached by

the two classifiers can rectify possible misclassifications and avoid unnecessary computation.

This can be seen as an example of ensembles, in which multiple classifiers are used to make

a decision. Interestingly, our ensemble reduces the total computational cost unlike ordinary

ensemble methods.

2.4.4 E2CM for Unsupervised Learning

We follow the same experimental setup as in [25] for MNIST and Fashion-MNIST datasets.

Namely, we use an encoder with 4 layers, which have 500, 500, 2000, 10 neurons, with a clustering

layer (CL) at the end. Let this encoder and clustering layer be DEClarge. After pretraining

DEClarge, we train the clustering layer as in [25]. Then, we create another encoder with the
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Figure 4. Accuracy-FLOPs curve on MNIST (left) and Fashion-MNIST (right) for unsupervised
learning using E2CM. Vertical lines indicate the individual FLOPs of DECs. Each black curve is

for one experiment, and the red curve is the average of all experiments.

500-500-10-CL architecture, where the weights of first two layers are copied from DEClarge and

frozen. We name this encoder DECmiddle and follow the same procedure as in DEClarge. Finally,

we repeat the same procedure for DECsmall, which has the 500-10-CL architecture, where the

weight of the first layer is frozen and copied from DEClarge.

After the training is complete, we take the intermediate outputs, i.e., the outputs of the

layers with 10 neurons. Then, using the cluster centers from each clustering layer, we follow

Algorithm 1. To measure the accuracy, we use the same technique described in [25].

During the experiments, we noticed that the process of pretraining affected the final result

significantly. We have thus run multiple experiments, and the performance corresponding to each

experiment is illustrated as one gray curve in Figure 4. The average of individual experiments

is shown as the solid red curve. As can be observed in Figure 4, by adding early exits to the
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architecture, it is possible to save 60% of the computation while losing only 6% in unsupervised

clustering accuracy on MNIST dataset. On Fashion-MNIST, the accuracy loss is 1%. Also,

thresholds make it possible to adjust the model according to various computational needs.

2.5 Pruning Early Exit Networks

In this separate line of work, we combine two approaches that try to reduce the computational

cost while keeping the model performance high: Pruning and early exit networks.

2.5.1 Introduction

Most early exit networks have two components: an off-the-shelf base network, and additional

small classifiers [11,12,44]. Until now, no work has been done to prune early exit networks. This

work aims to fill this gap. In particular, we evaluate the performance of two strategies. In the

first strategy, we prune and train the additional internal classifiers that enable early exit jointly

with the base network. In the second strategy, we first prune and train the base network, and

then the classifiers. The significance of the second strategy is that its optimality implies one can

separate the processes of early exit and pruning without loss of optimality.

2.5.2 Experiment

We compare the following two approaches using a ResNet-56 and CIFAR-10 [4, 16]:

1. Multiple linear layers are added to a ResNet-56 (the resulting network is a Shallow-Deep

Network [12]) and the entire model is pruned.

2. A ResNet-56 is pruned, multiple linear layers are added to the resulting network and then

these linear layers are pruned.
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The number, locations, and the architectures of the additional linear layers are as described

in [12]. For both approaches, pruning is followed by fine tuning. The procedure of pruning and

fine tuning is repeated 20 times. At each pruning phase, 10% of the weights are pruned using

global unstructured l1 norm based pruning. At each fine tuning phase, the model is trained for

10 epochs. Accuracy vs. FLOPs graphs are obtained using different confidence thresholds and

applying time sharing as in [12,44].

2.5.3 Results

2.5.3.1 Approach 1

The sparsity rate of each layer’s weights and the exit performances after 20 iterations of

pruning and fine tuning are shown in Figure 5. We can make the following observations:

1. Deeper layers are pruned slightly more than earlier layers, and final exit is pruned much

less than earlier exits as seen from Figure 5a.

2. Despite extensive pruning, exit performances at earlier exits are comparable with the

unpruned baseline, and even better at the first and second exit points as seen from Figure

5b. This suggests pruning can improve model performance.

3. Performance at the last exit is most likely hurt by the joint training of all linear classifiers.

4. Pruning reduces the computational cost up to around 20% without loss of performance.

Best accuracy obtained with pruning is around 4% less than the unpruned baseline, but

the computational cost is reduced to half as seen from Figure 5c.
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(a) Sparsity rates of the weights of each layer after 20 iterations of pruning and fine tuning.

(b) The exit performances after 20 iterations of
pruning and fine tuning. Each point corresponds to
the scenario where all samples exit from that exit
location. Black curve represents the performance
before any pruning.

(c) Accuracy-FLOPs plot. Samples exit from differ-
ent exit points due to confidence thresholds. Black
curve represents the performance before any pruning.

Figure 5. The sparsity rates and exit performances for Approach 1.

2.5.3.2 Approach 2

In this approach, the ResNet-56 is pruned and fine tuned first. Then, linear layers are added

to the model and these layers are pruned and fine tuned. The sparsity rate of each layer’s weights

and the exit performances after 20 iterations of pruning and fine tuning are shown in Figure 6.

We can make the following observations:
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1. Figures 6a and 6b shows that although the final exit went through two pruning phases

(one with base network, one with additional linear classifiers), it is not pruned much.

2. Except the last exit, deeper exits are pruned more than earlier exits as seen from Figures

6a and 6b.

3. Compared to Figure 5, linear layers become more sparse as seen from Figure 6b.

4. Unpruned baseline in Figure 6c has high accuracy only at the last exit because earlier

exits are attached after the base network was pruned and fine tuned. The additional linear

classifiers were not trained at this point.

5. Fine tuning linear layers pushes the computational cost up as seen in Figure 6d, which is

interesting.

2.5.3.3 Comparison

The exit performances of the two approaches are shown in Figure 7. From Figure 7a, it

can be seen that that pruning all layers at the same time performs better at earlier exit points

compared to pruning the layers in an ordered fashion. However, ordered pruning approach

performs better at deeper exit points which give the best performance.

In terms of computational cost, pruning all layers at once reduces the computational cost by

up to 15% compared to ordered pruning, but the performances are close at high accuracy rates

as seen from Figure 7b. Both approaches are able to reduce the computational cost by half at

the cost of 4% decrease in the accuracy.
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(a) Sparsity rates for the base network’s layers after
20 iterations of pruning and fine tuning.

(b) Sparsity rates for the additional classifiers after
20 iterations of pruning and fine tuning.

(c) The exit performances after 20 iterations of
pruning and fine tuning. Each point corresponds to
the scenario where all samples exit from that exit
location. Black curve represents the performance
before any pruning.

(d) Accuracy-FLOPs plot. Samples exit from differ-
ent exit points due to confidence thresholds. Black
curve represents the performance before any pruning.

Figure 6. The sparsity rates and exit performances for Approach 2.
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(a) The exit performances of the approaches. (b) Accuracy-FLOPs plots of the approaches.

Figure 7. Comparison of the approaches.



CHAPTER 3

CLASS BASED THRESHOLDING IN EARLY EXIT SEMANTIC

SEGMENTATION NETWORKS

Part of this chapter has been pusblished as A. Görmez and E. Koyuncu, "Class Based Thresholding in Early Exit Semantic Segmentation

Networks," in IEEE Signal Processing Letters, vol. 31, pp. 1184-1188, 2024.

Overview: We consider semantic segmentation of images using deep neural networks. To reduce

the computational cost, we incorporate the idea of early exit, where different pixels can be classified

earlier in different layers of the network. In this context, existing work utilizes a common threshold to

determine the class confidences for early exit purposes. In this work, we propose Class Based Thresholding

(CBT) for semantic segmentation. CBT assigns different threshold values to each class, so that the

computation can be terminated sooner for pixels belonging to easy-to-predict classes. CBT does not

require hyperparameter tuning; in fact, the threshold values are automatically determined by exploiting

the naturally-occurring neural collapse phenomenon. We show the effectiveness of CBT on Cityscapes,

ADE20K and COCO-Stuff-10K datasets using both convolutional neural networks and vision transformers.

CBT can reduce the computational cost by up to 23% compared to the previous state-of-the-art early exit

semantic segmentation models, while preserving the mean intersection over union (mIoU) performance.

Keywords: Semantic segmentation, early exit networks.

3.1 Introduction

As deep learning advances rapidly, new, larger models are frequently introduced, leading to

improved performance [6, 45, 46]. However, larger models, while capable of learning complex

34
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patterns, come with higher inference costs. In the era of decentralized computing on edge devices

(e.g., IoT), minimizing the inference cost of large models becomes crucial for deployment on

resource-constrained devices [47,48].

To reduce the inference cost without compromising performance, early exit networks are

proposed [10,11]. Early exit networks capitalize on the heterogeneity of real world data. Since

not all data samples have the same “difficulty”, “easy” data samples can be allowed to exit

the model early to save computation [10–12,44,49]. Early exit networks have been studied in

conjunction with network pruning [50,51]. They also have close ties with the phenomenon of

neural collapse [39, 44].

11%

23%

Figure 8. Comparison of CBT with the previous state-of-the-art on the Cityscapes dataset for
HRNetV2-W48 model.
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The neural collapse phenomenon states that as one travels deeper in a neural network, the

intermediate representations become more disentangled, forming distinct clusters at the last

layer, which makes classification easier [39]. Recent works expand on this phenomenon and

show that clusters begin to form even at earlier layers [44,52], resulting in a so-called cascading

collapse. In the supervised setting, each cluster corresponds to a class where the model is trained

on, and the mean of the cluster is referred to as simply a class mean.

In [44], the authors propose an early exit mechanism utilizing the neural collapse phenomenon,

outperforming various existing schemes. Specifically, a representation that is sufficiently close

to a class mean at any given layer can be allowed an early exit, without significant penalty in

classification performance. However, the idea of using the nearest class mean decision rule is not

immediately applicable to the task of semantic segmentation since one now needs to perform

pixel-wise classification. In fact, in the image classification task, there is one input and it belongs

to one class. Therefore, the representations of the images with the same label can be averaged,

and class means can be calculated. The intermediate layer outputs will be close to only one

class mean, and a meaningful prediction can be performed based on the distances to the class

means [44]. On the contrary, in semantic segmentation, one input has many pixels, each of which

belong to different classes. One image has one representation at each layer, and components of a

representation corresponds to many pixels. Hence, class means cannot be immediately calculated

from the representations for individual pixels for the task of semantic segmentation.

Having too many pixels in an image results in the curse of dimensionality, which presents an

additional complication. In fact, even if the class means could be obtained, using the nearest class
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mean decision for the pixels would be too costly since there are thousands of pixels in an image.

These make it infeasible to calculate the class means for the pixels using existing algorithms

(e.g. [44]). Nevertheless, utilizing the neural collapse phenomenon for semantic segmentation

would be particularly useful because the amount of computation can be reduced significantly for

the state-of-the-art semantic segmentation models [53–61].

We propose “Class Based Thresholding (CBT)”, a novel algorithm that reduces the com-

putational cost while preserving the model performance for the semantic segmentation task.

Leveraging the neural collapse phenomenon, CBT calculates the mean of the prediction probabil-

ities of pixels in the training set, for each class. Then, the thresholds for each class are calculated

via a simple transformation of the class means. These thresholds are then employed to allow the

early termination of the computation for confidently predicted pixels at inference time. We show

the effectiveness of CBT on the Cityscapes [62], ADE20K [63] and COCO-Stuff-10K [64] datasets

using the HRNetV2-W18, HRNetV2-W48 and vision transformer models [65, 66]. By efficiently

utilizing the neural collapse phenomenon, CBT can reduce the computational cost by up to 23%

compared to the previous state-of-the-art method while preserving the model performance as

shown in Figure 8.

3.2 Class Based Thresholding

We build on the state-of-the-art early exit semantic segmentation method, “Anytime Dense

Prediction with Confidence Adaptivity (ADP-C)” [1]. ADP-C adds early exit layers to the

base semantic segmentation model and introduces a masking mechanism based on a single user-

specified threshold value t to reduce the computational cost. If a pixel is predicted confidently
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Figure 9. Overview of our Class Based Thresholding (CBT) scheme at the inference time for an
example network with N = 2 exit layers and K = 3 classes: Tree, ground, and sky. In contrast
to [1] and [2], CBT utilizes different thresholds for different classes, considering their varying

levels of inherent difficulty. The thresholds are determined as a function of only two
non-trainable hyperparameters, independent of the number of classes or exits, thanks to our
neural collapse inspired design. At each exit, the layer output is split into K = 3 channels,

where each channel corresponds to one of the tree, ground, or sky classes. The channels are then
transformed into masks using their corresponding distinct thresholds, and the resulting masks
are merged. The methods presented in [1] and [2] thus become a special case of CBT where the
thresholds for every class is the same. Mask 1 illustrates the confident (white) pixels after the

merger at Exit 1, which is subsequently integrated into the following layers through
multiplication. This integration ensures that the model avoids unnecessary computations for
these confident pixels in subsequent layers. Exit 2 follows the same mechanism for inference.
Mask 2 exhibits a greater number of confident pixels due to the input image passing through

layers between Exit 1 and Exit 2. The exit predictions become progressively better.



39

at an exit layer, i.e., the maximum prediction probability over all classes is greater than the

threshold t, that pixel is masked for all subsequent layers. Any masked pixel will not be processed

again at later layers. The computational cost is reduced due to the induced feature sparsity.

While it is possible to let every pixel exit at the same time [67], this approach performs worse at

the boundaries of objects, and therefore we focus on ADP-C and pixel-wise early exiting.

A big room for improvement for ADP-C stems from the observation that the same user-

specified threshold value t is used for every class. However, it is more plausible that different

threshold values should be used for different classes, and the threshold values should reflect the

dataset and class properties, rather than just being a user-specified number. The observation

from [68] supports our hypothesis: “The distribution of max logits of each predicted class is

significantly different from each other.” This is because pixels belonging to different classes have

different difficulty levels of being predicted correctly. For example, using t = 0.998 for bicycle

class as in ADP-C makes sense because we may want to be really certain about pixels belonging

to bicycles. However, pixels belonging to the sky class will be often easier to predict than pixels

belonging to the bicycle class, which means the model will be confident about them much sooner.

Therefore, a lower threshold value can be used for the sky class without significant penalty in

prediction accuracy. Otherwise, more computation will have to be performed for the sky pixels.

Given a model trained on a semantic segmentation task with K classes, we propose using

different masking threshold values per class, based on the dataset and class properties. Let

T = [T1 · · ·TK ] ∈ [0, 1]K be the threshold vector that we wish to determine, where the kth

element Tk corresponds to class k, and k ∈ {1, 2, . . . ,K}. Consider M training inputs, each
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of which have a height of H pixels, and a width of W pixels. Suppose that we utilize N exit

layers in the model. The class prediction probabilities provided by the model at exit n for each

(m,h,w) triplet can be represented by the function ϕn : RM×H×W → [0, 1]K . Hence, given a

pixel at height h, width w of input m, the prediction probabilities for the K classes at exit n are

expressed as ϕn(m,h,w).

Let Sk denote the set of all pixels, or (m,h,w) triplets, whose ground truth is class k. At

each exit layer n, for each class k in the training set, we calculate the mean of layer n’s prediction

probabilities using all training set pixels in Sk. This averaging helps obtaining a broad sense of

information about the difficulty of pixels. This yields

pn,k ≜
1

|Sk|
∑

(m,h,w)∈Sk

ϕn(m,h,w) ∈ [0, 1]K . (3.1)

The motivation of averaging in (Equation 3.1) comes from the neural collapse phenomenon,

which states feature vectors converge to their average class means as one goes deeper in a

network [39]. Indeed, the averages pn,k should empirically be a good estimate for the class

probabilities, especially for a deep layer index n. Specifically, the ith element of pn,k denotes the

average probability of a pixel belonging to class i when the ground truth for that pixel is class k.

Next, we compute

Pk =
1

N

N∑
n=1

pn,k ∈ [0, 1]K , (3.2)

which is the average of pn,k over all layers. Hence, information across layers is shared to obtain

a global estimate Pk on the difficulty of classes. The logic for the information sharing across
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layers is to leverage insights from both shallow and deep layers, and to make the thresholding

less complex due to having only one set of thresholds for every exit. Information sharing in

CBT can be seen as a naive version of feature reuse in other multi-exit network settings such

as [30,31,69–71].

We then translate the estimates to classification thresholds as follows. We initialize the

threshold Tk to be the difference between the largest and the second largest elements of Pk,

because this initialization strategy has been shown to be a reliable confidence score, effectively

capturing the importance of the most dominant element relative to the second-largest one [12,44].

If the confidence score is high, then the masking threshold should be low so that the computation

can terminate easily. After all components of T are initialized in this manner, we inversely

scale T according to two non-trainable parameters α and β so that the maximum and minimum

class confidence scores determined by T will be converted to masking threshold values α and β

respectively, where α < β. The rationale behind this inverse scaling is to guarantee that classes

with high confidence scores will have low thresholds and vice versa. Specifically, the scaling is

done via

Tk ←
(
1− Tk −minT

maxT −minT

)
(β − α) + α. (3.3)

The inference is performed as follows: Let π ∈ [0, 1]K be the prediction probabilities for a

pixel at an exit layer. Let j = argmaxπ. If πj > Tj , this pixel will be marked as confidently

predicted (predicted as class j) and will be incorporated to the mask M as in Figure 9. By doing
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TABLE III

RESULTS ON CITYSCAPES.

Method
M

od
el

Exit

1 2 3 4

mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs

MDEQ [72] S 17.3 521.6 38.7 717.9 65.6 914.2 72.4 1110.5

ADP-C

H
R

N
et

V
2-

W
48

44.34 41.92 60.13 93.90 76.82 259.33 68.55 387.80

CBT [0.99, 0.998] 44.34 41.92 59.85 84.02 76.29 206.89 80.69 299.10

CBT-ns [0.99, 0.998] 44.34 41.92 59.82 84.00 76.28 206.88 80.74 299.17

CBT [0.95, 0.998] 44.34 41.92 57.97 71.57 72.86 155.77 76.60 222.65

CBT [0.9, 0.998] 44.34 41.92 56.05 65.91 68.92 132.49 72.29 186.31

ADP-C β = 0.9 44.34 41.92 54.86 53.27 67.10 118.25 69.31 157.48

ADP-C

H
R

N
et

V
2-

W
18 40.83 23.68 48.19 33.27 68.26 45.40 77.02 58.90

CBT [0.99, 0.998] 40.83 23.68 48.07 31.74 67.98 41.40 76.57 51.26

CBT [0.95, 0.998] 40.83 23.68 46.97 29.51 64.88 36.25 71.18 43.35

CBT [0.9, 0.998] 40.83 23.68 45.79 28.39 61.32 33.72 67.45 39.42

so, the outputs of subsequent layers at these locations will not be calculated. Instead, already

computed values will be used. Note that once calculated, T is not updated in inference.

3.3 Experiments and Results

We compare CBT against ADP-C [1] and DToP [2]. ADP-C and DToP allow early prediction

of pixels, but they use the same thresholds for all classes. We use Cityscapes, ADE20K, COCO-

Stuff-10K datasets [62–64], and HRNetV2-W18, HRNetV2-W48, ViT models for evaluation

[65,66]. We use mean intersection over union (mIoU) as our performance metric and number

of floating point operations (FLOPs) as our computational cost metric. We attach 3 early exit
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TABLE IV

RESULTS ON ADE20K.

Method
M

od
el

Exit

1 2 3 4

mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs

ADP-C

H
R

N
et

V
2-

W
48

4.12 6.20 5.16 15.42 12.15 52.47 42.82 100.28

CBT [0.9, 0.998] 4.12 6.20 5.15 15.07 12.09 50.48 41.85 94.31

CBT-ns [0.9, 0.998] 4.12 6.20 5.15 15.06 12.08 50.48 41.87 94.34

CBT [0.8, 0.998] 4.12 6.20 5.14 14.80 11.90 48.81 40.17 90.25

CBT [0.7, 0.998] 4.12 6.20 5.12 14.55 11.58 47.27 37.54 86.52

ADP-C

H
R

N
et

V
2-

W
18 4.89 5.88 6.83 7.84 8.94 12.73 9.74 19.04

CBT [0.9, 0.998] 4.89 5.88 6.80 7.73 10.07 12.24 11.78 17.89

CBT [0.8, 0.998] 4.89 5.88 6.75 7.67 10.17 11.98 11.95 17.26

CBT [0.7, 0.998] 4.89 5.88 6.70 7.62 10.09 11.75 11.88 16.71

layers to HRNet models as in [1] and 2 to ViT models as in [2] with the same exit structures

and positions. The training is done by using the weighted sum of the exit losses. We assign the

same weight of 1 to exit losses.

We have evaluated CBT with numerous α-β pairs (denoted as CBT [α, β]). We kept β = 0.998

for HRNet models, β = 0.9 for ViT-Base, and β = 0.95 for ViT-Large in our experiments for a

fair comparison because ADP-C and DToP achieve the best performance with these values. For

comparison purposes, we also included β = 0.9 for ADP-C in Table III. Naturally, it has the

lowest mIoU and GFLOPs because all classes use the same threshold of 0.9, the lowest among
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TABLE V

COMPARISON OF CBT AGAINST DYNAMIC TOKEN PRUNING (DTOP).

Method

D
at

as
et

M
od

el
Exit

1 2 3

mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs

DToP

A
D

E
20

K
V

iT
-B

as
e

41.79 55.70 45.85 66.60 49.21 83.52

CBT [0.85, 0.9] 41.79 55.70 45.52 65.60 49.04 80.80

DToP

V
iT

-L
ar

ge

37.86 208.96 47.97 352.32 52.18 452.3

CBT [0.9, 0.95] 37.86 208.96 47.82 336.01 51.69 421.93

DToP

C
O

C
O

S
tu

ff
10

K

31.89 124.94 41.71 205.14 45.64 266.17

CBT [0.9, 0.95] 31.89 124.94 41.09 197.53 45.29 252.04

the experiment settings. As shown in Table III, Table IV and Table V, lower α facilitates pixels

exiting early, and increasing it results in more confident predictions.

By Table III, CBT [0.99, 0.998] decreases the computational cost by 23% while losing only

0.62 mIoU for HRNetV2-W48. For Exits 2 and 3, the computational cost is decreased by 10%

and 20% respectively. By using smaller α, the computational cost can be decreased more, but

mIoU starts degrading as well. Note that Exit 4 of CBT [0.95, 0.998] can match the performance

of Exit 3 of ADP-C while using 14% less computation. For HRNetV2-W18, the results follow
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the same trend: CBT [0.99, 0.998] decreases the computational cost by 9% and 13% for exits 3

and 4 respectively as seen in Figure 10.

According to Table IV, we observe that CBT can also reduce the computational cost on the

ADE20K dataset, which has significantly more classes as compared to the Cityscapes datasets.

Specifically, CBT [0.90, 0.998] decreases the computational cost by 6% while losing only 0.97

mIoU for HRNetV2-W48. The reason why the performances at the first three exit is low for

both ADP-C and CBT is because the model cannot perform well enough due to large number of

classes. It needs significantly more computation (e.g. 94.31 GFLOPs instead of 15.07, also seen

in Table V with ViT) to have better performance. Also, this is why CBT cannot reduce the

computational cost on ADE20K as much as it does on Cityscapes with HRNet models.

In Figure 11, we illustrate CBT-calculated class thresholds for Cityscapes and ADE20K

datasets. Due to the ADE20K dataset’s large number of classes, only the 19 classes with the

lowest thresholds are displayed for both datasets. For Cityscapes, with a total of 19 classes, we

exhibit all class thresholds. Compared to ADE20K dataset, class thresholds are spread out more

uniformly between α = 0.9 and β = 0.998) for Cityscapes dataset (σ = 0.033). For ADE20K

dataset on the other hand (σ = 0.009), the behavior is different: Most class thresholds lie between

0.997 and 0.998. This supports our observation that CBT can reduce the computational cost

more when the number of classes is relatively low. We can also observe that for both datasets,

simple classes such as “sky” have low thresholds, while more complex classes have typically have

higher thresholds values, as expected.
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9%

13%

Figure 10. Comparison of CBT with the previous state-of-the-art on the Cityscapes dataset for
HRNetV2-W18 model.

Figure 12 shows the relationship between different thresholds and their corresponding class-

wise mIoU performances. When a lower α is used, class-wise mIoU performances drop slightly,

in line with the results in Table III, Table IV and Table V. The “sidewalk” and “car” classes

are affected the most with the change of their thresholds. For easier, high-mIoU classes, the

performance drop is not drastic, suggesting the effectiveness of CBT.

3.3.1 Ablation Study

CBT calculates the average of pn,k over all exits as in (Equation 3.2) to obtain one single

vector Pk, which is later scaled to obtain the thresholds. This allows the information across

the layers to be shared and reduces the number of total thresholds from N ×K to K. Here,
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Figure 11. CBT thresholds for Cityscapes and ADE20K (α = 0.9, β = 0.998).

we disable the information sharing by not averaging and allowing each exit to have its own

thresholds based on its pn,k. This prevents information flow from deeper exits to shallower exits.

Note that this is a more complex method due to having more thresholds. We include the results

in Table III and Table IV only for the highest α values and denote by CBT-ns. As seen from

the numbers, there is no significant difference between CBT and CBT-ns, meaning the more

complex CBT-ns is not superior to CBT.
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Figure 12. Class-wise mIoU performances for HRNetV2-W48 at Exit 2 with various α values
(β = 0.998). Dashed lines indicate the corresponding class thresholds.

Finally, we note that the ideas developed in this paper can be applied to multi-modal data,

which inherently have different requirements for processing complexity [73–76]. In particular, the

thresholds used for a neural network classifying text data should be different than the thresholds

used for the image data.



CHAPTER 4

DATASET PRUNING USING EARLY EXIT NETWORKS

Overview: We present EEPrune, a novel dataset pruning algorithm that leverages early exit

networks during training. EEPrune utilizes the innate ability of early exit networks to assess the difficulty

of individual samples and avoid overthinking. It applies multiple criteria to decide whether to prune

them. Specifically, for a training sample to be discarded, the confidence level of the model at the early

exit should be above a certain threshold, along with a correct classification at both the early exit and final

layers. Extensive experiments and ablations on CIFAR-10, CIFAR-100, Tiny Imagenet, KMNIST and

ImageNet datasets demonstrate that EEPrune consistently outperforms other dataset pruning methods.

Keywords: Dataset pruning, early exit networks.

4.1 Introduction

Sutton’s “bitter lesson” [45, 77] states that “general methods that leverage computation

are ultimately the most effective, and by a large margin.” Larger models trained on larger

datasets with more compute seem to be confirming this lesson due to major outcomes and great

performances [6,46,78–82]. However, creating larger models and training them on larger datasets

for longer, along with the expenses associated with retraining and hyperparameter tuning only

add to the already high training costs. These ever-increasing costs may not be sustainable in the

long run and are thus a significant problem that need to be addressed.

49
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Dataset pruning methods have emerged as a potential solution to address the high costs

of training deep learning models. By discarding redundant samples and keeping, for example,

only the difficult samples for training, the model performance on the test set stays the same

even when the model is trained on the smaller, pruned dataset from scratch [83–87]. While

dataset pruning methods strive to decrease training expenses, they typically train an ensemble

of models or train a single model fully to identify which samples can be discarded from the

dataset [83–85]. This is particularly undesirable for resource-constrained devices due to the large

memory footprint of the ensemble and high computational demands of full training [8, 88].

A different class of techniques to reduce computational cost is conditional computation through

early exit [10–12,30,31,44,89]. Early exit networks allow one to exploit the heterogeneous nature

of real-world data, which consists of “easy” samples that need less computation than “hard”

samples to be classified correctly [9,12,44]. Specifically, an early exit network introduces multiple

intermediate classifiers as exit points to an ordinary, base neural network. An easy input that

is confidently classified at an intermediate exit point may then exit early without the need for

traversing the remaining layers, thereby reducing the overall computation required for inference.

This also prevents overthinking, as it has been shown that computations in deeper layers can

change the classification outcome of the early exit [12]. Early exit networks can also provide

reduced training costs by allowing the end user to train only the attached exits while keeping

the base model frozen, which is particularly useful for edge devices [90,91]. Earlier works thus

demonstrate that utilizing not only the final outputs but also the intermediate representations

can greatly reduce the overall inference or training costs of a neural network. However, to the
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best of our knowledge, this observation has not yet been exploited for dataset pruning, which

becomes the focus of the present work.

In this work, we propose a new dataset pruning method named Early Exit Prune (EEPrune).

EEPrune incorporates intermediate features in the data pruning decision process via early exit

networks. By utilizing early exit networks to avoid overthinking, EEPrune identifies which

samples are easy and can be discarded from the dataset. Specifically, if a data sample 1) can be

classified correctly at the early exit layer, 2) can be classified correctly at the final exit layer and

3) the early exit layer is confident enough with its classification, that data sample is deemed

redundant and pruned. Through rigorous experiments, we show that EEPrune greatly improves

the training performance, measured in terms of the floating point operations (FLOPs) to reach a

certain level of accuracy. Our contributions are as follows:

• We use early exit networks, an inference time reduction technique, for the task of dataset

pruning, a training time reduction technique. This innovative approach has not been

explored in the literature before.

• We introduce a novel dataset pruning algorithm capable of maintaining baseline accuracy

and occasionally surpassing it, while consuming significantly less energy compared to other

dataset pruning methods.

• We shed light on the impact of exit location on the performance of identifying easy samples.

• We conduct an extensive and rigorous evaluation of dataset pruning methods and assess

their ability to maintain a balanced representation across different classes during the

pruning process.
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4.2 Related Work

Our research integrates two methods that are commonly employed to lower the inference and

training costs of deep learning models: early exit networks and dataset pruning.

4.2.1 Early Exit Networks

The first idea of adding early exits to neural networks goes back to the GoogleNet [3]. The

primary purpose of adding the early exits was to solve the vanishing gradient problem. To reduce

the inference cost, researchers have incorporated an exit criterion based on the entropy or the

confidence level of the output of the early exit layer [10–12,30,31,44,89,92]. Samples that meet

the exit criterion are considered easy and prediction is made at the early exit layer, resulting in

a faster computation. More complex samples that do not meet the exit criterion are forwarded

to the next layers for further processing. Early exit layers can be trained jointly with the base

model or separately [90], but approaches that do not require any training also exist [44]. These

make early exit networks suitable for performing training and inference for localized learning [91].

Work on the fundamental limits of general conditional computation architectures include [49].

4.2.2 Dataset Pruning

Dataset pruning methods aim to select the most representative samples from a dataset

and remove the rest in order to reduce the training cost [83–87, 93, 94]. This process can be

accomplished through the use of scoring techniques, which evaluate the importance or difficulty

of each sample in the dataset.

Two other areas related to dataset pruning are active learning and dataset distillation. Active

learning involves selecting the most informative data to label from a pool of unlabeled data, with



53

the aim of maximizing the model’s accuracy [95,96]. This approach differs from dataset pruning,

which discards some labeled data once and for all to keep the size of the training set small and

training cost low. In contrast, active learning repeats the process of selecting unlabeled data

and training the model on it. Dataset distillation also aims to reduce the size of the dataset but

does so by creating a smaller and often more difficult to interpret dataset from a larger, more

human-understandable dataset [97]. In a different direction, the question of how to optimally

prune the weights of an early-exit network has been studied in [50] with the objective of reducing

the inference costs.

4.3 Problem Statement

We focus on the task of image classification in this work, but our idea is applicable to

any supervised learning task. Our goal is to reduce the training cost of a neural network by

maximizing the amount of data we prune from the training set, while keeping the test set

performance intact.

Let (x
(i)
0 , y(i)) ∈ Dtr be a training sample-label pair from the training set Dtr where there

are Ntr samples and C classes, i ∈ {1, 2, . . . , Ntr} and y(i) is one-hot-encoded vector of length C.

Let Dte be the test set in the same manner. Let Dp ⊆ Dtr be the subset we want to prune to

reduce the size of our dataset. Also, let θDtr be the parameters of the network trained on Dtr

and A(θDtr , Dte) be the accuracy of this network on test set, which we call base performance.

We can formulate the optimization problem as
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max |Dp|

s.t. Dp ⊆ Dtr,

Dr = Dtr \Dp,

|A(θDtr , Dte)−A(θDr , Dte)| ≤ ϵ,

ϵ ≥ 0.

(4.1)

In the above formulation, ϵ is a small value controlling the deviation from the base performance.

While it holds true that training on a larger set of samples increases the generalization

ability of the neural network, we emphasize the following two insights: 1) Not all samples

share the same level of complexity, nor do they contribute equally to the network’s learning

process [9,12,44,83,86]. In some cases, certain samples are straightforward and can be accurately

classified after minimal computation, subsequently offering limited further learning value. On the

other hand, some samples are more difficult, and the network can keep learning from them over

an extended period. 2) In dataset pruning we are interested in the amount of information the

model can still extract from the data after some training. If the model was able to classify the

training data with a very high confidence in a short time, this means the data cannot contribute

more to the model. Such data samples yield gradients with negligible magnitudes, and thus their

contributions to the model updates are insignificant. Following these insights, we propose a novel

method, EEPrune, that uses early exit networks to identify and discard easy samples in order to

reduce the size of the training set.
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Figure 13. The computation graph of an early exit network used by EEPrune.

4.4 The EEPrune Method

We now introduce the EEPrune method. Let F be an early exit network with one early exit,

as shown in Figure 13. The input-output relationships for the network can be expressed as

x
(i)
j = lj(x

(i)
j−1), j = 1, . . . , L,

ŷ(i)ee = g(x
(i)
k ), ŷ

(i)
fe = h(x

(i)
L ),

(4.2)

where lj are layers of the base model, k is the early exit point, g is the linear classifier at the

early exit, ŷ(i)ee is the early exit output, h is the linear classifier at the final exit, and ŷ
(i)
fe is the

final exit output.

Our ultimate goal is to reduce the training cost while keeping the model’s performance on

the test set as high as possible. We achieve this by reducing the size of the training set. More

specifically, while training our early exit network on the dataset for a short time, we discard
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training samples from our dataset if 1) the early exit can predict the correct class correctly,

2) and the final exit can predict the correct class correctly, 3) and the maximum prediction

probability given by the early exit is greater than a specified threshold. In practice, we flag

samples for pruning one by one over multiple epochs of learning. After E epochs, where E is a

user-defined parameter, the learning process is stopped and all flagged samples can be removed

from the dataset. We can then train a new model over the pruned dataset.

As can be seen, EEPrune verifies three conditions before flagging an input sample for pruning.

The first condition ensures that the training sample of interest is easy enough to be correctly

classified by using the features of a layer at the middle (or even an earlier point) of the network.

This condition uses the easiness notion from the neural collapse phenomenon [39, 44, 52] and

the early exit networks [10–12,44]. The neural collapse phenomenon, and more specifically the

cascading collapse phenomenon states that the intermediate representations of the samples at

each layer form clusters and the clusters get separated from each other more as we move deeper

in the network [39, 52]. The idea of early exit networks is simply some samples are easier to

predict and they can be predicted correctly at earlier layers.

The second condition appears to be obvious because when there is no computational budget,

the final exit gives the best prediction. However, in some cases overthinking can occur, which

means that although the early exit can give a correct prediction, the computations after that

change the output and the final exit gives an incorrect prediction [12]. With the second condition,

we guarantee that the samples which are prone to overthinking are not discarded from the

training set. This condition is also important because studies show that adversarial attacks can
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Algorithm 2 EEPrune
Input: Data Dtr, early exit network F with parameters θ, threshold t, epoch E
Dp ← {}
for epoch = 1 to E do

for (x0
(i), y(i)) ∈ Dtr do

ŷ
(i)
ee , ŷ

(i)
fe = F (x0

(i))

J = −
∑C

c=1 yc
(i) log(ŷ

(i)
eec)−

∑C
c=1 yc

(i) log(ŷ
(i)
fec

)

θ ← θ − γ ∂J
∂θ

if argmax ŷ
(i)
ee = argmax y(i) and argmax ŷ

(i)
fe = argmax y(i) and max ŷ

(i)
ee > t then

Dp ← Dp ∪ {x0(i)}
end if

end for
end for
Train the model on Dtr \Dp as desired

make the network choose the final exit most of the time although the sample is easy, which

leads to redundant computation [12]. Hence, this condition also serves as protection against

adversarial attacks.

The third condition effectively determines the rate of pruning. Depending on the threshold,

if the early exit model is sure enough about its prediction, that sample is pruned. Our full

algorithm can be seen in Algorithm 2.

To better understand the effectiveness of EEPrune, we apply it to a toy dataset and analyze

which samples are pruned. The dataset is shown in Figure 14. There are 5 classes with 1000

samples each. The data is two dimensional. We use a simple 3 layer feed forward neural network

with 10, 10, and 5 neurons at each layer respectively. To make it an early exit network, we

add a linear layer with 5 neurons after the first layer. We use t = 0.7 as our threshold and run
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Epoch 1 Epoch 8 Epoch 9 Epoch 10

Figure 14. EEPrune discards samples (red) that are furthest away from the decision boundaries.

EEPrune for E = 10 epochs. We show the pruned samples at certain epochs in Figure 14 with

red. It can be seen that the pruned samples are the ones which are farthest away from any

decision boundary. As the model is trained more, more data is pruned but the pruning pattern

stays the same. When the model is trained on the remaining samples, it still performs the same

without loss in accuracy. The behavior of EEPrune resembles that of support vector machines

(SVMs): Note that in the latter, removing the non-support vectors does not change the decision

boundaries. At least, for the example in Figure 14, EEPrune correctly identifies the “non-support

vector” that are irrelevant for the class decision boundaries and successfully removes them from

the training process.

4.5 Experiments and Results

In this section, we describe in detail the experiments we conducted to measure the effectiveness

of EEPrune, and we provide the numerical results of the experiments. In our experiments, we

aimed to answer the following questions:
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1. Is it possible for models trained on pruned datasets to achieve the same accuracy as models

trained on unpruned datasets?

2. How does a particular dataset pruning method affect the final model accuracy?

3. How much computational resource do dataset pruning methods use?

4. How does the location of the early exit point affect the pruning threshold t?

5. How does placing the early exit point at a different location affect the final performance?

6. Does any dataset pruning method favor pruning a particular class?

7. How does modifying EEPrune criteria affect the performance?

4.5.1 Datasets and Models

In our experiments, we used the following five publicly available image classification datasets:

CIFAR-10, CIFAR-100, Tiny ImageNet, KMNIST and ImageNet [16–19].

CIFAR-10 [16] consists of 60000 32× 32 RGB images of 10 common vehicles and animals.

Each class has equal number of samples. The training set contains 50000 images and the test set

contains 10000 images.

CIFAR-100 [16] is a more challenging dataset than CIFAR-10 as it consists of 60000 32×32

RGB images of 100 classes. Like CIFAR-10, each class has equal number of samples and the

training set contains 50000 images while the test set contains 10000 images.

Tiny ImageNet [18] is a dataset even more challenging than CIFAR-100. The training set

consists of 100000 RGB images, and there are 200 classes. The images are larger in size (64× 64)
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and the classes are more diverse. There are 10000 validation and 10000 test images. Each class

has equal number of samples.

KMNIST [19] consists of 70000 28× 28 gray-scale images of 10 Japanese characters. Each

class has equal number of samples. The training set contains 60000 images and the test set

contains 10000 images.

ImageNet [17] is one of the most widely used large-scale datasets for the image classification

task. The training set consists of 1281167 RGB images coming from a wide variety of sources,

and there are 1000 classes. There are 50000 validation and 100000 test images. The images vary

greatly in quality, resolution, lightning and each class has a variable number of samples.

We used the following three widely-used and highly-regarded models to benchmark dataset

pruning methods in our experiments: EfficientNetV2-M [98], MobileNetV3-large [23] and ResNet-

50 [4].

EfficientNetV2-M is a convolutional neural network from the improved EfficientNet model

family [24]. It has around 54 million parameters, and it is specifically designed to offer faster

training and better parameter efficiency, making it a good subject to measure effectiveness of

dataset pruning methods [24,98].

MobileNetV3-large is an efficient convolutional neural network with around 5.4 million

parameters, designed specifically for mobile devices [23]. We selected it for evaluating dataset

pruning methods due to its exceptional parameter efficiency and remarkable performance on

various visual tasks.
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ResNet-50 is a 50 layer convolutional neural network that achieves strong performance on

numerous visual tasks [4]. It has around 25 million parameters. Since it is a widely used and

well established benchmarking model, we opted to include it in our experiments.

4.5.2 Baseline Methods

We compare EEPrune against the following baselines:

No pruning: The given model is trained on the given dataset fully without any data pruning.

Random pruning: A subset of samples is randomly selected and pruned. The model is

then trained on the remaining dataset.

Error-L2-Norm (EL2N) [83]: The EL2N method creates an ensemble of models and trains

them for a period of time. The ℓ2 error vectors (i.e., prediction minus the ground truth label

vector) from each model are then averaged, and the samples with the lowest ℓ2 error norm are

discarded. By discarding the samples with the lowest error norm, this method ensures that the

most critical samples are retained for further training. In our experiments, we used an ensemble

of 10 models with the same architecture as our main model trained on the pruned dataset. Each

model in the ensemble was trained for 15 epochs, following the suggestion in [83].

Forgetting [84]: The Forgetting method tracks the number of times each training sample

is first predicted correctly but later incorrectly throughout an entire training session. In our

experiments, we trained the model on the full dataset for 200 epochs and tracked the amount of

forgetting events for each sample. We then sorted the samples based on the amount of forgetting

events and pruned the ones that have been forgotten the least.
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Selection via proxy (SVP) [85]: The SVP method is similar to the forgetting method,

but uses smaller models and shorter training. In our experiments, we followed the same approach

as forgetting, but used EfficientNetV2-S, MobileNetV3-small and ResNet-18 models instead of

EfficientNetV2-M, MobileNetV3-large and ResNet-50 models respectively. We also trained the

model for 50 epochs instead of the full 200 epochs.

Complexity gap: In [86], the authors proposed a novel training-free data scoring method

called the complexity gap score. This approach involves measuring the difference between the

data complexity when a sample is removed from the training set. The data complexity measure is

defined as the extent to which a data sample contributes to the movement of network parameters

during training [86]. In our experiments we used the source code provided by [86] to calculate

the complexity gap score for each dataset and we pruned the lowest scoring samples.

TABLE VI

SUMMARY OF THE EXPERIMENTS.
Experiment axis Choices

Methods EEPrune, No pruning, Random, EL2N, Forgetting, SVP, Complexity gap

Datasets CIFAR-10, CIFAR-100, Tiny ImageNet, KMNIST, ImageNet

Models EfficientNetV2-M, MobileNetV3-large, ResNet-50

Pruning ratios 10%, 20%, 30%, 40%, 50%, 60%

Metrics Top-1 accuracy, cumulative number of samples seen

Number of repeats 3
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4.5.3 Experiment Settings

We conducted six experiments for each method-model-dataset combination to prune 10%,

20%, 30%, 40%, 50% and 60% of the training set. After each dataset pruning phase, the models

are reinitialized and trained from scratch on the remaining dataset. To ensure the stability and

reliability of our results, we repeated each method-model-dataset evaluation 3 times and reported

the mean and standard deviation in our figures and tables. We reported top-1 classification

accuracy and the number of floating point operations (FLOPs) (as cumulative number of samples

seen during training) to reach that level of accuracy. Since the main goal is reducing the training

costs, a dataset pruning method is better than the other dataset pruning methods if it requires

fewer samples to train the model to a certain level of accuracy. The summary of our detailed

experiments is shown in Table VI.

4.5.4 Training Details

We train our models using stochastic gradient descent with a single NVIDIA RTX A6000 GPU.

We train them for 200, 200, 100, 50 and 100 epochs on CIFAR-10, CIFAR-100, Tiny ImageNet,

KMNIST and ImageNet respectively. To reduce overfitting and improve generalization, we use

label smoothing with α = 0.1 [99], dropout with p = 0.2 [100] and mixup with αmixup = 0.2 [101].

We also employ cosine learning rate decay with a warm-up duration of 5 epochs to gradually

reduce the learning rate over the course of training. To optimize GPU memory usage and

accelerate training, we set different batch sizes for the EfficientNetV2-M, MobileNetV3-large and

ResNet-50 models. We use a batch size of 2048 for EfficientNetV2-M and MobileNetV3-large,

and 1024 for ResNet-50.
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For EEPrune, we used E = 10 for CIFAR-10, CIFAR-100 and KMNIST datasets, and E = 15

for the Tiny Imagenet and Imagenet datasets. We found out that as the dataset complexity

increased, EEPrune required slightly larger E to decide which samples are redundant, similar to

how models need more training to reach a high level of performance on a challenging benchmark.

After this point, larger E values did not yield any additional benefits, but increased the training

costs (more on this in Section 4.5.6). On the other hand, smaller values resulted in poor

performance since a diverse set of samples were pruned, similar to random pruning. We ran

experiments for various t ∈ [0, 1] to prune exactly the 10%, 20%, 30%, 40%, 50% and 60% of the

training set. To serve as the early exit point, we added linear layers to the following points: 28th

MBConv layer for EfficientNetV2-M, 9th network layer for MobileNetV3-large, and 7th bottleneck

block for ResNet-50. All of these points correspond to the middle point of the network.

4.5.5 Models Can Reach a Higher Accuracy with EEPrune

In this section, we share our results. Figure 15 illustrates how the dataset pruning methods

perform across different model architectures and datasets, in terms of the speed of the models

trained on the pruned datasets to reach baseline accuracy. For the no pruning baseline, the

curves corresponding to the same model-dataset pair are identical. We only present the portion

of these curves that aligns with other dataset pruning method curves in the same subfigure on

the x-axis.

Figures 15a, 15b, 15d and 15j show that models trained on datasets pruned via EEPrune can

occasionally surpass the baseline accuracy, despite being trained on less data. As discussed in

Section 4.3 and exemplified in Figure 14, removing the simpler samples do not effect the class
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100, 50%

1 2 3 4 5 6 7 8
Number of samples trained on in total 1e6

55

60

65

70

75

Te
st

 a
cc

ur
ac

y

EEPrune
No pruning
Random
EL2N
Forgettting
SVP
Complexity-gap

(c) ResNet-50, CIFAR-100, 20%
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(d) ResNet-50, CIFAR-100, 40%
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(e) MobileNetV3-large, Tiny Im-
ageNet, 20%
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(f) MobileNetV3-large, Tiny Im-
ageNet, 50%

1 2 3 4 5 6 7
Number of samples trained on in total 1e6

40

45

50

55

60

65

70

75

80

Te
st

 a
cc

ur
ac

y

EEPrune
No pruning
Random
EL2N
Forgettting
SVP
Complexity-gap

(g) EfficientNetV2-M, CIFAR-10,
30%
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(h) EfficientNetV2-M, KMNIST,
50%
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(i) ResNet-50, CIFAR-10, 10%
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(j) ResNet-50, KMNIST, 20%
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(k) MobileNetV3-large, CIFAR-
10, 30%
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(l) MobileNetV3-large, KMNIST,
50%

Figure 15. Comparison of dataset pruning methods across different model architectures and
datasets, in terms of the speed of the models trained on the pruned datasets to reach the
baseline accuracy. The model, dataset and pruning ratios are shown under the subfigures.
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decision boundaries. Hence, by removing the simpler samples early in training, EEPrune can

achieve the same classification accuracy with lower computational cost of training. In most of

the other cases, EEPrune can match the performance of no pruning baseline, and only rarely

EEPrune is outperformed slightly by another dataset pruning method (e.g. Figure 15e). Often,

complexity gap and random pruning achieves a performance comparable to EEPrune, but EL2N,

SVP, and forgetting methods exhibit noticeably worse performance than EEPrune.

One interesting result seen in Figure 15 is that random pruning often performs better than

all the other dataset pruning methods except EEPrune. This is particularly surprising as EL2N,

Forgetting, SVP and complexity gap require ensembles, long training or sophisticated data

scoring but still often place behind random pruning in terms of reached accuracy. One possible

reason for this might be ensembles leading to cross-talk and therefore incorrect identification

of easy samples. On the other hand, long training and sophisticated data scoring probably

overthink and fail at identifying easy samples. Although long training and sophisticated data

scoring occasionally surpass EEPrune’s performance on some model-dataset pairs as seen in

Table VII, they are computationally heavy as seen in Figure 16 and contradict the goal of dataset

pruning.

We also share the entire set of results for the MobileNetV3-large model in Table VII. The

performances that surpass the no pruning baseline and highest performance in a row are displayed

in bold. The accuracies reported for the no pruning baseline are the results obtained after full

training sessions on the entire dataset. As seen from the table, EEPrune achieves the highest

performance in more than half of the settings. For CIFAR datasets, EEPrune has the majority of
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TABLE VII. COMPARISON OF DATASET PRUNING METHODS FOR
MOBILENETV3-LARGE.

Dataset, Pruning Ratio No pruning EEPrune Random EL2N Forgetting SVP Complexity gap

CIFAR-10, 10% 92.05± 0.06 91.60± 0.22 90.34± 0.11 91.26± 0.04 90.38± 0.11 91.96± 0.10

CIFAR-10, 20% 91.86± 0.05 91.07± 0.25 88.80± 0.29 90.68± 0.20 89.00± 0.26 91.14± 0.36

CIFAR-10, 30% 91.51± 0.36 90.42± 0.22 86.69± 0.37 90.01± 0.14 87.48± 0.29 90.88± 0.60

CIFAR-10, 40% 89.64± 0.55 90.47± 0.36 89.34± 0.37 83.63± 0.10 88.84± 0.07 86.34± 0.21 90.03± 0.17

CIFAR-10, 50% 88.30± 0.74 88.50± 0.23 81.03± 0.51 88.01± 0.23 85.10± 0.13 88.78± 0.16

CIFAR-10, 60% 84.48± 0.48 86.85± 0.17 78.04± 1.19 86.10± 0.29 82.94± 0.32 86.96± 0.39

CIFAR-100, 10% 73.39± 0.48 72.01± 0.18 71.34± 0.23 71.77± 0.03 71.47± 0.49 72.30± 0.52

CIFAR-100, 20% 73.57± 0.16 71.04± 0.42 69.49± 0.34 70.98± 0.05 68.71± 0.27 71.44± 0.39

CIFAR-100, 30% 72.32± 0.41 70.07± 0.35 66.44± 0.61 67.78± 0.06 65.88± 0.80 70.25± 0.25

CIFAR-100, 40% 67.59± 0.38 71.93± 0.70 67.02± 0.50 62.05± 0.25 65.54± 0.25 62.87± 0.45 67.35± 0.48

CIFAR-100, 50% 70.86± 0.63 64.64± 0.69 58.67± 0.56 63.20± 0.68 59.07± 0.38 63.33± 0.46

CIFAR-100, 60% 68.52± 0.77 60.64± 0.48 54.03± 0.28 60.33± 0.46 55.42± 0.14 57.87± 0.36

Tiny ImageNet, 10% 61.34± 1.31 61.72± 1.16 60.93± 2.06 63.43± 0.37 62.21± 0.67 62.89± 0.29

Tiny ImageNet, 20% 60.58± 1.32 60.07± 0.88 57.46± 2.07 62.67± 0.27 60.96± 0.11 60.92± 0.44

Tiny ImageNet, 30% 59.89± 0.95 58.09± 1.63 55.73± 0.73 60.79± 0.65 58.38± 0.50 58.91± 0.10

Tiny ImageNet, 40% 56.32± 0.95 58.53± 0.97 56.39± 0.90 51.70± 0.41 58.43± 0.55 56.09± 0.41 55.89± 0.72

Tiny ImageNet, 50% 56.88± 0.64 54.28± 0.26 46.33± 1.08 55.11± 0.11 52.78± 0.64 52.82± 0.32

Tiny ImageNet, 60% 55.35± 0.75 50.99± 0.65 39.59± 1.17 51.55± 0.05 49.54± 0.12 48.50± 0.78

KMNIST, 10% 96.27± 0.16 96.11± 0.16 93.04± 0.03 95.94± 0.27 96.00± 0.15 96.21± 0.15

KMNIST, 20% 96.21± 0.04 95.94± 0.04 90.99± 0.22 95.68± 0.10 95.34± 0.16 96.24± 0.03

KMNIST, 30% 96.05± 0.12 95.69± 0.11 89.54± 0.53 95.36± 0.12 94.83± 0.21 96.13± 0.04

KMNIST, 40% 95.10± 0.23 96.15± 0.11 95.22± 0.12 88.49± 0.30 94.81± 0.12 93.94± 0.05 96.18± 0.11

KMNIST, 50% 96.06± 0.18 94.84± 0.25 86.38± 0.50 94.27± 0.10 93.58± 0.18 96.23± 0.33

KMNIST, 60% 95.72± 0.18 94.10± 0.01 83.05± 1.14 93.62± 0.22 92.56± 0.24 96.16± 0.12
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the high performances, only the complexity gap method can perform better in two high pruning

ratio settings. For Tiny ImageNet, forgetting methods achieves strong performance, and is the

best for low pruning ratios. On the other hand. EEPrune outperforms all the other methods for

high pruning ratios. Finally for KMNIST, complexity gap method achieves five of the six best

performances, but all methods are fairly close to each other except the EL2N method.

On a larger and more diverse dataset such as ImageNet, EEPrune is more effective than the

other dataset pruning methods as seen from Table VIII. Specifically, EEPrune has the highest

early exit and final exit accuracies among all dataset pruning methods, meaning EEPrune reaches

the same level of accuracy with less training cost, thus showing the scalability and applicability

to larger datasets. On the other hand, the no pruning baseline is unmatched, which suggests

that there is still room for improvement to reach the performance of models trained on the full

dataset.
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Figure 16. The amount of energy consumed by dataset pruning methods during the pruning
phase for different models. (a) CIFAR-10. (b) CIFAR-100. (c) Tiny ImageNet. (d) KMNIST.
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TABLE VIII

COMPARISON OF DATASET PRUNING METHODS ON IMAGENET FOR
MOBILENETV3-LARGE AND 50% PRUNING.

Method
Accuracy

Early exit Final exit

No pruning 48.84± 0.07 70.85± 0.11

EEPrune 48.22± 0.14 68.39± 0.11

Random 46.99± 0.15 66.23± 0.03

EL2N 40.01± 0.60 58.52± 0.46

Forgetting 46.50± 0.23 61.07± 0.15

SVP 44.50± 0.28 58.24± 0.24

4.5.6 EEPrune Uses Less Computation to Prune Data

In this section, we assess how much computation each dataset pruning method uses in order

to measure the computational efficiency of methods. We use carbontracker Python tool to

measure the energy consumption and carbon footprint of the methods [102]. The results are

shown in Figure 16.

EL2N uses an ensemble of models and it trains each model for a period of time. Forgetting

and SVP methods train the model fully and partially respectively to gather the number of

forgetting events. On the other hand, EEPrune uses a single model and trains it for only E = 10

epochs, which makes it much more efficient as seen from its energy consumption in Figure 16. In
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addition, EEPrune outperforms all other methods almost always as seen in the previous section.

This makes EEPrune particularly suitable for resource-constrained devices.

Since random pruning and calculating complexity gap scores do not require training of the

neural network, and carbontracker Python tool only measures the energy consumption during

network training, we do not show their performance results in Figure 16. Still, one can argue

that random pruning will consume negligible power as it relies simply on randomly selecting

the data to prune. However, the resulting inference performance is vastly sub-optimal as we

have demonstrated in Figure 15 and Table VII. The complexity gap method relies on creating a

Gram matrix H ∈ RNtr×Ntr , and calculates the complexity gap score for a training sample by

inverting H after removing the corresponding row and column from the matrix. Using Schur

complement for matrix inversion, the time complexity is O(Ntr
3), and the space complexity is

O(Ntr
2). Therefore, the time complexity of the complexity gap method grows cubically with

the number of training samples but increases linearly with EEPrune. Therefore, EEPrune will

consume significantly less power than for datasets with a large number of elements. Not relying

on storing and inverting large matrices, using small E (e.g. 10) for a very short amount of

training and achieving remarkable results across different models, datasets and pruning ratios

make EEPrune an attractive candidate for resource-constrained settings.

4.5.7 EEPrune Retains the Important Samples & Prunes the Easy Samples

In this section, we demonstrate the effectiveness of EEPrune in retaining samples crucial for

learning while discarding redundant samples. We set the pruning ratio to 50% and let EEPrune

identify the redundant samples, denoted by Dp as in Algorithm 2. Since the pruning ratio is
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TABLE IX

MOBILENETV3-LARGE PERFORMANCE WHEN THE MODEL IS TRAINED ON DP

INSTEAD OF DTR \DP FOR 50% PRUNING WITH EEPRUNE.

Dataset
Test Accuracy

Trained on Dp Trained on Dtr \Dp

CIFAR-10 85.63 88.30

CIFAR-100 50.56 70.86

Tiny ImageNet 55.43 56.88

KMNIST 93.63 96.06

ImageNet 68.12 68.39

50%, the training set is partitioned into two equal size subsets: Dp and Dtr \ Dp. We then

train a MobileNetV3-large on both subsets. We present the results in Table IX. Notably, the

model trained on Dp exhibits a subpar performance, indicating the significance of crucial samples

present only in Dtr \Dp.

We also evaluate the model trained on Dtr \Dp, on Dp instead of the test set. The reason

behind is that Dp contains easy and redundant samples, therefore the model should be able to

achieve a high accuracy on this set. This is indeed true for low pruning ratios as seen in Table X.

As the pruning ratio increases, Dtr \Dp shrinks and the model learning worsens. However, the

accuracy numbers remain higher compared to the test set accuracies shown in Table VII.
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TABLE X

MOBILENETV3-LARGE PERFORMANCE EVALUATED ON DP AFTER THE MODEL IS
TRAINED ON DTR \DP .

Dataset
Accuracy on Dp

10% pruning 60% pruning

CIFAR-10 98.25 90.94

CIFAR-100 87.95 70.65

Tiny ImageNet 86.85 68.27

KMNIST 99.92 99.81

ImageNet 92.81 70.06

4.5.8 Ablation on Exit Locations

As previously mentioned, we added linear layers after the 28th MBConv layer for EfficientNetV2-

M, the 9th network layer for MobileNetV3-large, and the 7th bottleneck block for ResNet-50. All

of these points correspond to the middle point of the network. In this section, we investigate the

effect of the early exit location on final model accuracy.

While there are numerous possible locations to place the early exit within a neural network,

for the sake of efficiency, we restrict our analysis to two key positions: before and after the

midpoint of the network. Specifically, we examine early exit placement after the first and third

quartiles of the model, based on the number of layers.
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Figure 17. Histogram of maximum prediction probability, max ŷ
(i)
ee for training samples after

E = 10 epochs. (a) CIFAR-10. (b) CIFAR-100. (c) Tiny ImageNet. (d) KMNIST.

Unlike other dataset pruning methods, EEPrune depends on a prediction threshold t to

identify and prune easy samples. This makes it difficult to prune exactly k% of the training

samples since it is unknown what value of t will correspond to the easiest k%. For this reason,

we ran EEPrune and obtained the histogram of maximum prediction probabilities as shown in

Figure 17. As it can be seen from the figure, the threshold t depends on the model and the

dataset. For a new model or dataset, the threshold t is determined in the same way after an

informative histogram is obtained. Specifically, t is the maximum value that ensures exactly k%

of the samples have maxŷ
(i)
ee > t. We note that this phase consumes significantly less energy

compared to other dataset pruning algorithms as shown in Figure 16. We also discover that it

depends on the exit location. Figure 18 shows the distribution of maximum prediction probability

maxŷ
(i)
ee for different models, datasets and exit locations.
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Figure 18. Violin plot demonstrating how maximum prediction probability maxŷ
(i)
ee varies when

the early exit is placed before (red) and after (blue) the mid (green) point of the model. Before,
mid and after corresponds to first, second and third quartile of the model in terms of number of

layers. (a) CIFAR-10. (b) CIFAR-100. (c) Tiny ImageNet. (d) KMNIST.

Figure 18 shows that placing the early exit at the third quartile of the model results in a

higher t for pruning the same amount of data except in few cases (e.g. ResNet-50 on KMNIST).

This indeed makes sense since a deeper exit uses more computation and understands the data

better, making it more confident about its predictions. Depending on the inherent dataset

difficulty, placing the exit at an earlier location might suffice too (e.g. KMNIST).

We now show the performance results. We consider MobileNetV3-large and ResNet-50 with

the CIFAR-100 dataset. As shown earlier in Figure 15 and Table VII, for this combinations,

EEPrune outperforms all existing methods at all pruning rates. As seen from Table XI, placing

the exit too early or too deep can hurt the final performance. In general, placing it early rather

than deep gives a better result, possibly highlighting the fact that earlier layers can detect

easier samples. Nevertheless, opting for the mid point turns out to be the optimal choice for
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TABLE XI

COMPARISON OF EXIT LOCATIONS FOR EEPRUNE ON CIFAR-100 FOR
MOBILENETV3-LARGE AND RESNET-50.

Model Exit Location
Pruning Ratio

10% 30% 60%

Before 67.98± 0.37 67.66± 0.45 67.59± 0.56

MobileNetV3-large Mid 73.39± 0.48 72.32± 0.41 68.52± 0.77

After 65.57± 0.37 67.01± 0.59 67.57± 0.48

Before 75.13± 0.41 74.89± 0.53 71.26± 0.37

ResNet-50 Mid 77.09± 0.23 75.27± 0.20 71.57± 0.43

After 75.60± 0.19 74.14± 0.22 70.08± 0.30

all pruning rates and network models that we have considered. In fact, the prudent choice of

choosing the mid point strikes a balance between computational cost and extracted information,

acknowledging that moderation is often the key to success in life. We note that the specific exit

location (e.g. layer 49 vs. layer 50 vs. layer 51 for a 100-layer network) is a hyper-parameter

that should be tuned and evaluated on a hold-out set.

4.5.9 Class Imbalance

While it is feasible to apply a constraint to all dataset pruning methods to maintain an equal

pruning of data from each class, these methods do not inherently have that ability. Here, we

delve deeper into the samples removed by each dataset pruning method. Figure 19 displays a

heat map illustrating the number of samples removed from each class across the four datasets.

The most and the least pruned classes are shown in Table XII.
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Figure 19. Number of samples each dataset pruning method discards from the training set
shown as heat map. The model is MobileNetV3-large. (a,e) CIFAR-10. (b,f) CIFAR-100. (c,g)
Tiny ImageNet. (d,h) KMNIST. First row shows 10% total pruning and second row shows 60%

total pruning. The 8 columns correspond to EEPrune, Random, EL2N, Forgetting, SVP,
Complexity Gap, EEPrune-Before and EEPrune-After.

First, we take a look at low (10%) amount of data pruning. For CIFAR-10, EEPrune seems

to prune the cat class less than the others. Changing the exit location affects the number of

samples pruned from each class, but still the cat class is the least pruned class. The most uniform

pruning is naturally achieved by random pruning, and forgetting and SVP come next. EL2N

achieves a particularly imbalanced pruning as roughly one quarter of samples from the bird class

is pruned despite 10% total pruning.

Pruning behaviors show similarity between KMNIST and CIFAR-10. We hypothesize that

this is due to both having relatively small number of classes. EL2N and complexity gap methods

prune two different characters more than the others and they cause the most imbalanced dataset.
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TABLE XII. CLASSES THAT UNDERGO THE MOST AND THE LEAST PRUNING WHEN
THE DATASET IS SUBJECTED TO EACH METHOD FOR 10% PRUNING. THE MODEL

IS MOBILENETV3-LARGE.
Method Most Pruned Classes Least Pruned Classes

CIFAR-10 CIFAR-100 Tiny ImageNet KMNIST CIFAR-10 CIFAR-100 Tiny ImageNet KMNIST

EEPrune automobile (765) wardrobe (105) monarch (347) ha (750) cat (190) otter (0) tailed frog (0) o (401)

Random airplane (520) girl (67) Christmas stocking (69) re (636) horse (470) rocket (33) convertible (36) ki (557)

EL2N bird (1187) train (74) desk (376) na (1235) automobile (64) bus (34) goldfish (0) o (241)

Forgetting cat (567) seal (73) plunger (455) ha (632) truck (427) sunflower (27) goldfish (0) wo (568)

SVP cat (785) otter (136) pop bottle (168) su (644) automobile (293) wardrobe (10) dugong (8) re (558)

Complexity gap ship (814) orange (161) orange (223) ha (1119) cat (244) snake (6) cougar (4) ma (305)

EEPrune-Before automobile (928) wardrobe (187) monarch (447) ki (751) cat (15) beaver (0) tailed frog (0) tsu (501)

EEPrune-After ship (732) wardrobe (102) monarch (321) su (639) cat (178) otter (0) tailed frog (0) ya (559)

When the number of classes increases, the imbalance in pruning becomes more apparent as

seen in Figure 19b and Figure 19c. EEPrune for CIFAR-100 and forgetting method for Tiny

ImageNet seem to favor some classes more than the others for pruning. Also, changing the exit

location significantly changes the pruning behavior.

Table XII shows the most and the least pruned classes. Changing the exit location does

not change the class that is pruned by EEPrune the most or the least, except for the KMNIST

dataset and the “EEPrune-After” method for the CIFAR-10 dataset. Except for a few cases, the

other methods focus on different classes each.

When we increase the pruning ratio to 60%, we can see from the second row of Figure 19

that the heat maps become slightly more uniform, except the EL2N method. EEPrune-Before



78

on CIFAR-100 and Tiny ImageNet continues exhibiting imbalanced pruning, which suggests exit

location should be carefully selected.

4.5.10 Ablation on EEPrune Conditions

EEPrune is simple and flexible, therefore new data pruning schemes can be easily be proposed

based on it. Here, we describe two natural ideas based on accumulating the loss values of the

exits and assigning weights to the original conditions of EEPrune.

EEPrune-Loss: According to a previous study conducted by [103], early exits can act as a

form of regularization when the exit losses are accumulated and the exit layers are optimized

together. In an ideal scenario, easy samples would have both low early exit losses and low final

exit losses, but this may not always be the case. We propose bypassing the EEPrune conditions

and evaluating the samples based on the sum of the exit losses as in Equation 4.3, similar to

how the exit layers are trained jointly by accumulating losses. By sorting the samples based on

their aggregate losses, we can prune those with the lowest overall loss. The loss weights λ1 and

λ2 can be tuned as well, but for simplicity we use equal weights of 1.

J = −λ1

C∑
c=1

yc
(i) log(ŷ(i)eec)− λ2

C∑
c=1

yc
(i) log(ŷ

(i)
fec

) (4.3)

EEPrune-Soft: EEPrune is a strict pruning method in the sense that it requires all three

conditions to be met for a sample to be pruned. However, it can be made more lenient by

assigning weights to the conditions. To this end, we propose assigning weights ω1, ω2, ω3 to the

three conditions in Algorithm 2, where the sum of the weights is one. This approach allows

for a better assessment of the conditions, with each weight indicating the degree to which the
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condition should be met in order for a sample to be pruned. For example, if the first condition is

satisfied, the sample would be assigned a score of ω1, and so on for the other conditions.

While this weighting system provides a more refined approach to scoring the samples, it

may not be sufficient in cases where there is a tie. To address this limitation, we propose the

addition of a fourth score, (max ŷ
(i)
ee +max ŷ

(i)
fe ) · ω4, which averages the maximum element of

the early exit prediction vector and the final exit prediction vector for the sample of interest.

Here, ω4 should be very small to avoid dominating the other scores. By incorporating this fourth

score, we can better differentiate between samples with similar scores and make more informed

decisions about which samples to prune. Finally, the samples can be sorted according to their

total score and the samples with the lowest total score can be pruned.

For EEPrune-Loss, after training for E epochs, we calculated the sum of the early exit

loss and the final exit loss for each sample, sorted them, and pruned the lowest scoring

10%, 20%, 30%, 40%, 50%, 60% of samples based on their loss. For EEPrune-Soft, we used

ω1 = 0.4, ω2 = 0.2, ω3 = 0.4, and ω4 = 0.001 for weighting the conditions as this set of values

allows breaking the ties between sample scores, utilizes both exit predictions and no condition

dominates another.

The results are shown in Figure 20. Figures 20a and 20b show that EEPrune-Soft can match

the performance of the no pruning baseline despite EEPrune’s performance falls of when the

pruning rate increases. However, on a more challenging data such as CIFAR-100 and Tiny

ImageNet (Figures 20c, 20d, 20g, 20h), neither EEPrune-Soft nor EEPrune-Loss can match

EEPrune’s performance. In addition, although there are some cases (Figures 20c, 20d, 20e, 20f)



80

1 2 3 4 5 6 7 8 9
Number of samples trained on in total 1e6

78

80

82

84

86

88

90

92

Te
st

 a
cc

ur
ac

y

EEPrune
No pruning
EEPrune-Loss
EEPrune-Soft

(a) MobileNetV3, CIFAR-10, 10%
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(b) MobileNetV3, CIFAR-10, 50%
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(d) MobileNetV3, CIFAR-100,
40%
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(e) ResNet-50, CIFAR-100, 20%
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(f) ResNet-50, CIFAR-100, 30%
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(g) MobileNetV3, Tiny ImageNet,
40%
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Figure 20. Comparison of EEPrune-Loss and EEPrune-Soft against EEPrune and no pruning
baseline.

where EEPrune can surpass no pruning baseline, we find that EEPrune-Loss and EEPrune-Soft

cannot ever surpass the no pruning baseline. This result suggests that EEPrune’s reasonable

strictness on satisfying all three conditions together is an important property.



CHAPTER 5

CLASS-AWARE INITIALIZATION OF EARLY EXITS FOR

PRE-TRAINING LARGE LANGUAGE MODELS

Overview: We propose a novel class-aware weight initialization technique for early exit large

language models with the purpose of accelerating pre-training. Our design utilizes the neural collapse

phenomenon combined with a Gaussian mixture model for the distribution of feature vectors at a given

layer. Specifically, we calculate the average of token representations at the early exit point and use

the resulting vectors together with class probabilities for initializing the early exit vectors. The next

token prediction accuracy of our class-aware initialization technique is up to five times higher than

other baselines at epoch zero and matches or surpasses them in later epochs throughout the pre-training

process.

Keywords: early exit, weight initialization, class means, pre-training, LLMs

5.1 Introduction

State-of-the-art large language models (LLMs) have a large number of parameters, and

generally, the higher the number of parameters, the better the performance [6,46,77,78,104–107].

However, their large size and autoregressive design results in high inference latency, which is not

desirable for low resource environments and time sensitive settings.

The vast majority of LLMs have a “tunnel-like” architecture: The input to the model

is processed by all of the layers in a sequential manner, regardless of the input’s inherent

81
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difficulty [12,44]. On the other hand, not all inputs have the same level of difficulty. Early exit

networks exploit this heterogeneous difficulty of inputs. One or more intermediate classifiers are

attached to the model, allowing token-level conditional computation [10–12,44,108–111]. Easy

tokens can exit early from the LLM in order to save computation.

While the addition of early exits can reduce the inference latency, initially they do not possess

the optimal weights. The early exit layers have to be trained first, before being effective at

inference time. Early exit layers are typically trained together with the backbone model, with

two primary approaches: Training only the early exit and the final exit layers while freezing the

non-exit layers, or training the backbone and the exits together [11, 12]. Generally, the latter

performs better since everything is optimized jointly, but the cross-talk between the exits of the

network may lead to suboptimal learning and long training times [12]. Ideally, we would like to

initialize the weights of the early exit layers in such a way that the cross-talk is minimized, the

joint training is facilitated and training time is reduced.

The sizes of both the state-of-the-art LLMs and their training data lead to long training

time and high costs. This makes training an early exit LLM even more difficult and costly.

In this work, we propose a novel class-aware early exit initialization technique for early exit

LLMs to reduce the pre-training costs. We make connections to the optimal detection for the

vector additive white Gaussian noise (AWGN) channel from the digital communications domain

and utilize the neural collapse phenomenon [39]. Specifically, we calculate the average of token

representations at the early exit point and use the resulting vectors for the initialization. While

calculating the average of vector representations has been shown to work well as a decision
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mechanism for early exit networks [44,112], our work is the first to apply it to the initialization

of early exit LLMs with the purpose of accelerating pre-training.

We demonstrate the effectiveness of our novel weight initialization technique on WikiText-

2 [113] and BookCorpus [114] datasets using OPT [46] and TinyLlama [115] models. Notably,

our class-aware initialization technique achieves 5× the performance of other baselines at epoch

zero. Moreover, it can match or surpass the other baselines at later epochs throughout the

pre-training.

5.2 Related Work

5.2.1 Early Exit LLMs

Numerous attempts have been made in the past to reduce the inference latency of transformer

[5] based models in the past. Perhaps the most visited idea has been adding early exits to BERT

variants [14,15,116–118]. However, these models are primarily designed for classification tasks

such sentiment analysis, rather than language modeling and text generation.

Developing early exit LLMs for text generation is more challenging, because token-level early

exiting requires careful consideration [119, 120]. Copying hidden states of tokens that exited

early to the deeper layers for KV-caching, which confidence measure to use and batch inferencing

have been tackled in the past [108–110].

5.2.2 Efficient LLM Training

As the number of parameters in an LLM grows, fine-tuning it on datasets becomes more time-

consuming and expensive. To address this challenge, researchers have explored parameter-efficient

fine-tuning techniques such as adapter approaches, often coupled with quantization [121–124].
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These methods involve training only a subset of the model parameters, effectively reducing the

overall training cost. Most recently, parameter-efficient fine-tuning of early exit LLMs has been

explored via data, tensor and pipeline parallelism [125,126].

5.3 Preliminaries and Problem Formulation

In this section, we establish our notation and lay the foundation for our method by describing

the pre-training process of a decoder-only LLM. We then provide background on the problem of

optimal detection for the vector AWGN channel from the digital communications domain, which

we will make critical connections to later on.

5.3.1 Pre-training

We focus on the pre-training phase of models belonging to the family of decoder-only LLMs.

The model consists of an embedding layer, L decoder blocks and a language modeling (LM)

head. Let V , D, C denote the vocabulary size, the embedding dimensionality, and the context

length, respectively.

During the pre-training process, the tokenizer breaks down a text from the training set into

C tokens, denoted as Ti ∈ {1, . . . , V }, where i ∈ {1, . . . , C}. Let Sv denote the set of all training

tokens Ti at any position i such that Ti = v.

The tokens are subsequently passed through the embedding layer in parallel, resulting in

corresponding vectors Ri,0 ∈ RD. These vectors are then fed into the first decoder block,

generating output vectors Ri,1 ∈ RD. This iterative process continues sequentially, with the

output Ri,l of decoder block l being passed to decoder block l + 1 as the input, where l ranges

from 1 to L− 1.
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Figure 21. Feed-forward phase of pre-training a decoder-only language model.

In the final stage of the feed-forward process, the output Ri,L of the last decoder block is fed

to the LM head, which is a linear layer with weight matrix W ∈ RD×V . The output of the LM

head is converted to probability vectors Pi ∈ RV via the softmax operation. Suppose the index

of the maximum probability in Pi is T̂i. Since the primary objective of the pre-training phase is

next-token prediction, the model is optimized with the cross-entropy loss to ensure T̂i = Ti+1.

This process is shown in Figure 21.

In order to accelerate inference, one or more early exit LM heads can be integrated to the

already pre-trained decoder-only language model. However, the integration of the additional

layer(s) necessitates a separate pre-training, which may incur substantial costs as discussed in

Section 5.1. Here, we assume that only one early exit LM head is added. Suppose that this

LM head appears after decoder block K where K < L, and its weight matrix is W ∈ RD×V ,

sharing the same dimensions with the backbone LM head. Our main goal is to find a smart way
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of initializing W such that the pre-training phase for the early exit LM head will be accelerated,

and therefore training costs associated with it will be decreased. Our proposed solution relies on

the problem of optimal detection for the vector AWGN channel.

5.3.2 Optimal Detection for the Vector AWGN Channel

The vector AWGN channel can be modeled as

r = sm + n, m ∈ {1, . . . ,M}, (5.1)

where r, sm and n are N -dimensional vectors. A message sm is sent to the receiver through

the AWGN channel, which adds a noise n to the message. The components of the noise vector

are independent and identically distributed Gaussian random variables with zero mean and N0
2

variance. The receiver observes r, and decides which message was sent among {s1, . . . , sM}. The

goal is to minimize the probability of error. Using the Bayes rule, the optimal detection rule can

be written as

m̂ = argmax
1≤m≤M

[P (sm | r)]

= argmax
1≤m≤M

[
P (sm)P (r | sm)

P (r)

]
= argmax

1≤m≤M
[P (sm)P (r | sm)] .

(5.2)
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As in Equation 4.2-15 from [127], the equation above can be simplified further as follows:

m̂ = argmax
1≤m≤M

[P (sm)P (r | sm)]

= argmax
1≤m≤M

[P (sm)Pn(r − sm)]

= argmax
1≤m≤M

[
P (sm)

(
1√
πN0

)N

e
− ∥r−sm∥2

N0

]

= argmax
1≤m≤M

[
P (sm)e

− ∥r−sm∥2
N0

]
= argmax

1≤m≤M

[
lnP (sm)− ∥r − sm∥2

N0

]

= argmax
1≤m≤M

[
N0

2
lnP (sm)− 1

2
∥r − sm∥2

]
= argmax

1≤m≤M

[
N0

2
lnP (sm)− 1

2
∥sm∥2 + r · sm

]
= argmax

1≤m≤M
[ηm + r · sm] ,

(5.3)

where ηm = N0
2 lnP (sm)− 1

2 ∥sm∥
2. The careful reader will notice the striking similarity between

the last line of Equation 5.3 and the operational logic of a linear layer serving as a classification

head. Given an input x, the linear layer with weights w and biases b classifies the input according

to the maximum element of b+ x · w.

5.4 Method

Our aim is to initialize the early exit LM head in such a way that it starts from a reasonably

good point and achieve a certain level of next-token prediction accuracy before any pre-training,

rather than starting from a random point achieving a low next-token prediction accuracy.
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We calculate the average of all output vectors after decoder K that correspond to the tokens

in Sv:

Mv =
1

|Sv|
∑
Ti∈Sv

Ri,K . (5.4)

Note that the backbone model is already pre-trained at this point, therefore the intermediate

representations are not bad representations. The underlying idea behind Equation 5.4 is the

neural collapse phenomenon [39]: The intermediate representation of an input belonging to a

certain class converges to its corresponding class mean in the final layer of the network. Here,

we carry this idea one step further and postulate that, if the input token Ti satisfies Ti ∈ Sv

for some class/word v, then the corresponding feature Ri,K at layer K is a Gaussian random

vector with mean Mv (i.e. the class mean in (Equation 5.4)), and covariance N0
2 I, where N0 is a

hyperparameter to be tuned experimentally. Now suppose that the early exit LM head is the

receiver we mentioned in Section 5.3.2. In this context, we can write

Ri,K = Mv + ϵ, v ∈ {1, . . . , V }, (5.5)

where Ri,K , Mv, and ϵ are all the D-dimensional vector. Also, ϵ, is a zero-mean noise vector

with covariance N0
2 I. The mean vector Mv is sent to the early exit LM head as the message, and

noise ϵ has been added during transmission. The early exit LM head observes Ri,K , and decides

which mean vector was sent among {M1, . . . ,MV }.
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Similar to Equation 5.3, the optimal decision equation for the early exit LM head can be

written as

T i = argmax
1≤v≤V

[ηv +Ri,K ·Mv] , i = 1, . . . , C

ηv =
N0

2
lnP (Mv)−

1

2
∥Mv∥2 ,

(5.6)

where N0 is a hyper-parameter and P (Mv) is the prior probability for each token in the training

set, determined using the empirical frequencies in the training set.

As a result, the early exit LM head is initialized as

W = [M1, . . . ,MV ] ∈ RD×V , (5.7)

with a separate bias vector η = [η1, . . . , ηV ]. Our initialization method is shown in Figure 22.

5.5 Experiments and Results

In this section we describe our experiments in detail and present the numerical results.

5.5.1 Models

In our experiments, we used OPT-125M, OPT-350M, OPT-1.3B models from the OPT model

family [46]; as well as TinyLlama-1.1B [115].

The OPT model family is a series of open-sourced decoder-only language models ranging

from 125M to 175B parameters. The largest OPT model performs similarly to GPT-3 [6] with

approximately 1/7th of the training cost [46].

The TinyLlama1.1B model is developed with the goal of pre-training such a compact model on

3 trillion tokens [115]. The model shares the same architecture with Llama2 model family [104].
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Figure 22. Our proposed method for initializing the early exit LM head using the mean
representation vectors for each token in the vocabulary set.

The number of decoder layers (L), embedding dimensionality (D) and vocabulary size (V ) of

the models we used in our experiments are shown in Table XIII.

5.5.2 Datasets

In our experiments, we used the WikiText-2 [113] and the BookCorpus [114] datasets for

pre-training the models.
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TABLE XIII

SUMMARY OF THE MODELS USED IN OUR EXPERIMENTS.

Model L D V

OPT-125M 12 768 50272

OPT-350M 24 1024 50272

OPT-1.3B 24 2048 50272

TinyLlama-1.1B 22 2048 32000

WikiText-2 is a collection of tokens extracted from the verified “Good” and “Featured” articles

from Wikipedia [113]. For pre-training, we used the “wikitext-2-v1” subset from HuggingFace,

which contains 44.8K rows.

BookCorpus dataset is a large collection containing more than 11K books and 74M rows [114].

Due to its size, we used 1% of the dataset. We allocated 80% of the 1% for pre-training, and the

remaining 20% for evaluation.

5.5.3 Experiment Settings

For a backbone model, we begin by downloading the most recent checkpoint from HuggingFace.

This checkpoint is the result of training the model on a large and diverse collection of datasets.

However, since we are going to add an early exit layer and pre-train it on only one dataset, we

fine-tune the backbone model on our dataset for 3 epochs so the effect of other datasets on the

model is minimal. We found out that fine-tuning for more than 3 epochs led to overfitting.
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After the initial fine-tuning of the backbone model, we add the early exit LM head after

decoder K = L/2. Specifically, K is 6, 12, 12 and 11 for OPT-125M, OPT-350M, OPT-1.3B

and TinyLlama-1.1B models respectively. The early exit LM heads share the same architecture

and number of parameters with the backbone LM head, the only difference is that we allow the

early exit LM head to have a bias vector.

We train the resulting early exit LLM on two different settings. In the first setting, called

“no freezing,” all parameters are trainable. In the second setting, called “freezing,” we freeze the

parameters of the model except the two LM heads. These two settings are how early exit neural

networks are trained in the literature [90, 128]. The training is done on a single NVIDIA A6000

with a batch size of 32. Due to limited hardware memory, we used a context length of C = 128.

We used PyTorch [129] in our experiments.

5.5.4 Results

We now present the results of our class-aware early exit initialization method and compare it

against two other initialization techniques:

1 Random initialization: This is the default weight initialization technique for linear

layers in PyTorch [129]. The weights W ∈ RD×V are initialized as W ∼ U
[
− 1√

D
, 1√

D

]
,

where U is the random uniform distribution.

2 Copy-from-backbone: Since the weights W of the backbone LM head is already pre-

trained and have the same dimensions as W , copying W into W can serve as a good

starting point [126].
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(a) OPT-125M, No freezing

0 2 4 6 8 10
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

Ne
xt

-to
ke

n 
pr

ed
ict

io
n 

ac
cu

ra
cy

Class-aware
Random
Copy
0.8 Class-aware + 0.2 Random
0.8 Class-aware + 0.2 Copy

(b) OPT-125M, Freezing
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(c) OPT-350M, No freezing
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(d) OPT-350M, Freezing
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Figure 23. Next-token prediction accuracies on WikiText-2 for the early exit LM head
initialization techniques.
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For our class-aware initialization, we use N0 = 0.25 and we use the empirical frequencies of

tokens in the training set for P (Mv), i.e., the number of occurrences of the token divided by the

total number of tokens in the training set.

We report the next-token prediction accuracy throughout the pre-training epochs for all

initialization techniques. We pre-trained the models for 10 epochs as performance started to

drop due to overfitting. The results on the WikiText-2 datasets are shown in Figure 23.

The most important takeaway from Figure 23 is that, our class aware initialization technique

achieves 25% next-token prediction accuracy at epoch zero, without any training. On the other

hand, random initialization and copying from backbone can achieve at most 5%. This shows

that class-aware initialization of early exits is a promising technique for resource constrained

devices and settings.

For the “no freezing” setting, although class-aware initialization starts pretty well, it is

surpassed by the copy-from-backbone method easily. There are also some scenarios where

random initialization surpasses the class-aware initialization as in Figures 23c and 23e. Here, we

can easily match the baselines via a convex combination:

W = αWCA + (1− α)WB, (5.8)

where WCA is the weights initialized in a class-aware manner, and WB is either random initialized

weights or the copied weights from the backbone LM head. This convex combination gets the

best of both worlds: It helps preserve the performance of class-aware initialization at epoch zero,
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and it matches the copy-from-backbone performance at later epochs. In our experiments we

evaluated α ∈ {0.2, 0.4, 0.6, 0.8}, and we show the best performing α-curves in Figure 23.

In the “freezing” setting, only the LM heads are trainable, therefore learning is more difficult.

As it can be seen from Figures 23b, 23d, 23f, 23h; the random and copy-from-backbone methods

struggle heavily and cannot achieve a good next-token prediction accuracy. On the other hand,

our class-aware initialization starts from a pretty good point and keeps performing at the same

level throughout the pre-training. Only for the OPT-125M model, there is a sharp drop at the

first epoch of the pre-training as seen in Figure 23b. This drop can be somewhat treated by the

convex combination equation given in Equation 5.8.

The same trends are observed for the BookCorpus dataset as seen in Figure 24. Specifically,

without any training, the class-aware initialization starts from a high next-token prediction

accuracy and the convex combination allows preserving the high performance throughout the

pre-training. Notably, in the “freezing” setting, class-aware initialization performs the best
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(c) TinyLlama-1.1B, No freezing
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Figure 24. Next-token prediction accuracies on BookCorpus for the early exit LM head
initialization techniques.



CHAPTER 6

FUTURE WORK

We outline some promising research directions that could further reduce inference and training

cost of deep learning models.

Given the overhead of E2CM, it becomes prohibitive for the settings where the number

of classes is large. Therefore, it can be extended such that the overhead is reduced, possibly

with pooling layers and/or weight/activation quantization techniques. Doing so would lead to a

further decrease in inference costs.

Similar to combination of early exit networks with pruning, early exit networks can also be

combined with other inference acceleration techniques such as weight/activation quantization

and knowledge distillation. The correct combination recipe is not obvious and requires extensive

experimentation on a variety of tasks.

CBT can be extended to multimodal data, which inherently have different requirements

for processing complexity. In particular, the thresholds used for a multimodal neural network

classifying text data should be different than the thresholds used for the image data.

In order to reduce the training costs, EEPrune may be extended to unsupervised learning

tasks as the amount of unlabeled data is typically much greater than the amount of labeled data.

It is possible to modify the conditions of EEPrune to make it applicable to unsupervised learning

tasks, opening up new avenues for cost-efficient training. One other potential modification draws

inspiration from contrastive learning and data augmentation techniques [131]. Similar to how
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contrastive learning generates positive pairs from augmented samples, EEPrune could be adapted

to discard a sample from the dataset if a specific set of augmented versions of the sample also

satisfy the pruning conditions.

Class-aware early exit LLM initialization can be improved further to accelerate not only

pre-training, but also supervised fine-tuning and reinforcement learning from human feedback

stages too. Moreover, it can be made quantization-friendly so that large LLMs initialized in a

class-aware manner can be deployed to consumer GPUs with limited memories.



CHAPTER 7

CONCLUSION

We proposed E2CM, a novel early exit mechanism based on the class means. Unlike existing

early exit mechanisms, our method does not modify the base model and does not require

gradient-based training, which makes it useful for network training on low-power devices. Under

fixed training time budget, our method outperforms existing early exit schemes. In addition,

combining our method with existing early exit techniques achieve better trade-off between the

computational cost and the network accuracy. Moreover, we showed that our method is not only

useful in supervised learning tasks, but also in unsupervised learning tasks.

We considered the problem of pruning early exit architectures. We evaluated the performance

of two strategies in particular. First, intermediate classifiers are pruned jointly with the base

network. Second, the base network is pruned first, followed by the intermediate classifiers.

Although the former strategy outperforms the latter in general, the performance of the two

strategies are close at high accuracy rates. Therefore, the processes of pruning and early exit

can potentially be separated without significant penalty in performance.

We proposed CBT, which utilizes the naturally occurring neural collapse phenomenon to

reduce the computational cost of early exit semantic segmentation models. Experiment results

on different datasets and models suggest our method is effective in reducing the computational

cost without significant penalty in model performance.
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We presented EEPrune, a dataset pruning algorithm that utilizes the inherent ability of early

exit networks to distinguish easy samples from the difficult ones. We showed that EEPrune

achieves superior performance across various pruning rates as compared to existing approaches.

We noted that EEPrune and variants do not need a full training session to identify the easy

samples, unlike competing algorithms. This makes them valuable for resource constrained

settings.

We developed a novel class-aware weight initialization technique for early exit LLMs based

on mean representation of tokens. We made connections to the optimal detection problem for

the vector AWGN channel from the digital communications domain. Our method performs

better than baselines in both “no freezing” and “freezing” settings. We showed the applicability

of our method to various model families and datasets, and its effectiveness on accelerating the

pre-training phase.
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Appendix A

COPYRIGHT PERMISSIONS

In this appendix, we present the copyright permissions for the articles, whose contents were
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