
Static and Dynamic Data Race Detection for
Multithreaded Environments

Alperen Görmez
Thomas McCarthy

ECE 566 - Parallel Processing
University of Illinois at Chicago

Spring 2022

Outline
● Introduction to data races
● Static data race detection
● Dynamic data race detection

What causes a data race?
A data race occurs when:

● Two or more threads in a single process access the same memory
location concurrently

● At least one of these threads is performing a write operation
● Threads are not using correct synchronization

Example
● Serial output = 100

● Parallel output = ???

Why do we care?
● Non-determinism in execution

● Torn read/write operations on some physical systems
○ Nonsensical combination of the data from the two operations
○ Can cause problems if used as control data

■ Crashes
■ Security Issues

How to prevent data races?
● Simple, use synchronization!

● Synchronization ensures that
only one thread can affect the
shared variable at a time.

● Other threads must wait to
interact with the shared
variable

New problem: Synchronization is expensive!
● Synchronization constructs

enforce correct execution, but are
expensive

○ Overhead of primitives
○ Less code can be parallelized

● Should only be used when
necessary, nowhere else

New problem: Hard to find data races in real code
● Real code is complex, with

thousands of lines with
hundreds of variables

● Data race detection: methods
and techniques to find data
races in real life code

Static Data Race Detection
● Examination of the actual code for data races

○ Done at/before compilation of code
○ Good for detecting data races from incorrect locking
○ Struggles with timing related data races

● Three main steps:
○ Discover shared variables
○ Lock set analysis
○ Warning reduction

Step 1: Discover shared variables
● Shared variable: variable that can

be accessed by multiple threads
at concurrent points in their
execution

● Types of shared variables:
○ Global variables (and their aliases) of

threads
○ Pointers passed as parameters to API

functions
○ Escape variables

Step 1: Discover shared variables
● Only variables of these types that

are written to can potentially
have data races

● All data races happen at accesses
to elements of this subset of
shared variables

Step 1: Discover shared variables
● Note: global variables can be

accessed by local pointers

● Need to track which local pointers
are in fact pointing to global
variables

Step 1: Discover shared variables
● Note: Only part of a global

structure can be shared data,
while the rest is not

● Track the shared/global status of
each field separately

Step 2: Lockset analysis
● Once the potential places for data races have been found, the

synchronization constructs used at each position need to be checked to
see if correct synchronization already exists

● Locks are the most common form of synchronization construct used in
parallel thread programs

○ Only one thread can hold a lock at a given time
○ Other threads must wait for the lock to be released before acquiring it

Set 2: Lockset analysis
● For each control location that

could produce a data race, the set
of all locks held by a thread at
that location is calculated

● The sets of all locations that
access the same variable must
intersect to form a non-empty set

Step 2: Lockset analysis
● Problem: Most locks are passed to

functions as local pointers. The
values of these local pointers (and
thus which locks they represent) are
dependent on the parent function.

● Similar to shared variables, dataflow
analysis is necessary to find which
local pointers point to the same lock
and prevent false positives.

Step 3: Warning reduction
● Steps 1 and 2 are guaranteed to produce warnings for all of the data

races produced by incorrect locking. However, they are NOT guaranteed
to only identify actual data races. Some of the warnings are false
positives.

● Adding additional synchronization for these false positives will slow down
program execution without any benefit. As such, these false positives
should be removed from the warning list.

Step 3: Warning reduction - Locking patterns
● Data races can only happen in

concurrent portions of code

● Even if two potential data race
locations have disjoint lock sets,
the pattern of lock set acquisition
can make concurrency
impossible.

Step 3: Warning reduction - Locking patterns
● To find which positions can be reached concurrently, first find the set of

locks set (and possibly unset) after each lock held at all positions

P Lock Held P(Lock Held)

T1/8 L1 L2

T2/8 L2 L1

Step 3: Warning reduction - Locking patterns
● Two positions P1 and P2 are NOT concurrent if there exists two locks L1

and L2 such that L1 is in P1(L2) and L2 is in P2(L1)

P Lock Held P(Lock Held)

T1/8 L1 L2

T2/8 L2 L1

L1 = L2
L2 = L1

Static data race detection - End
● Once all possible data race locations have been found and as many false

positives as possible have been thrown out, synchronization constructs
can be added to the remaining locations to ensure correct program
execution

Dynamic data race detection
● Employs a tracing mechanism to see if a particular run of the program

caused a data race

● On the fly: stores partial trace information for detecting as data race occurs

● Less false alarms compared to static detection

Drawbacks of dynamic data race detection
● For t threads of n instructions each, number of possible orders is around

tnt

● Feasible data races: data races we could see in any execution
● Exactly locating feasible data races is NP hard
● Apparent data races: approximations of feasible data races based on

synchronization behavior in an execution
● Locating all apparent races is NP hard

Drawbacks of dynamic data race detection
● Checks a particular run. Not possible to detect all possible data races.

Needs to check all possible runs.

● Overhead

● Trade-off: low overhead leads to missing more data races

Detection algorithms

● S: synchronization object
● release/unlock(S): thread releases S
● acquire/lock(S): thread acquires S
● barrier(S): all threads release S as they reach the barrier, then acquire

Detection algorithms
1. DJIT+
● Execution of threads is split into sequence of time frames
● Each thread t has vector (vector clock, VC) of time frames stt
● For each index u, stt[u] stores latest local time frame of thread u, whose

release operation is known to t
● Recording the clock of the most recent write to each variable S by each

thread t
● release(S) starts a new time frame
● Access history of shared location v has arv and awv
● Based on happens-before relationship

Detection algorithms
1. DJIT+
● Initialization

○ ∀i stt[i] ← 1
○ ∀i stS[i] ← 0
○ Access history of shared location v: ∀i arv[i] ← 0, ∀i awv[i] ← 0

● release(S)
○ stt[t] ← stt[t] + 1
○ ∀i stS[i] ← max(stt[i], stS[i])

● acquire(S)
○ ∀i stt[i] ← max(stt[i], stS[i])

Detection algorithms
1. DJIT+
● Access to shared location

○ arv[t] ← stt[t] or awv[t] ← stt[t]
○ Checking for data race:

■ If read: check if another thread u wrote to v and awv[u] ≥ stt[u]. This
means t checks if it knows a release that preceded the write in u

■ If write: check if there exists another thread u such that awv[u] ≥ stt[u]
OR arv[u] ≥ stt[u]. This means t checks all reads and writes by other
threads to v.

● Does not imply the program is race free

Detection algorithms
2. Lockset
● Time frames idea, with locks
● Checks a sufficient condition for data-race-freedom
● Locking discipline: each shared location is protected by the same lock on

each access to it
● All accesses are made while holding the lock

Detection algorithms
2. Lockset
● How to know which lock protects what?
● Infer

Erickson

Detection algorithms
2. Lockset
● Candidate set C(v) for each shared location v: set of all locks that could

potentially be protecting v so far
● locks_held(t) for each thread t: set of locks currently held by t

Detection algorithms
2. Lockset
● Initialization:

○ ∀v, initialize C(v) to the set of all possible locks
● Upon access to v by t

○ lh ← locks_held(t)
○ When acquired, lh ← lh ∪ {lock}
○ When released, lh ← lh - {lock}
○ C(v) ← C(v) ∩ lh
○ If C(v) = ∅, race warning is issued.

● If a shared location is accessed when C(v) is empty, locking discipline is
violated.

Detection algorithms
2. Lockset
● No warnings = the algorithm guarantees that no data race is present on

the current execution
● However, warning does not imply a data race

Detection algorithms
● Lockset cannot distinguish between real race and false alarm. It is too strict.
● DJIT+ detects only the ones that occurred
● Every data race is a violation of the locking discipline: it can be said that

Lockset and DJIT+ detect the superset and subset of the races
● Number of checks in DJIT+ can be reduced if additional information from

Lockset is used
○ If current access to v does not empty C(v), it means v is still protected and we can be sure

this access will not result in a data race

● Storage overhead as well as runtime: O(n)

Multirace: a logging mechanism
● Shared locations = minipages
● Accessing a minipage through a wrong view will result in page fault
● Each minipage can be referenced through the following views:

○ NoAccess: will catch every access to it
○ ReadOnly: will catch writes
○ ReadWrite: no page faults

● Multirace = hybrid DJIT+ Lockset

DataCollider: near zero overhead
● A runtime tool for finding data races
● Low runtime overheads
● Can successfully find many errors in Windows kernel, Windows Shell, IE,

SQL server…
● Previous work: log data and synchronization operations at runtime, infer

conflicting accesses using happens-before (DJIT+) or lockset reasoning

DataCollider: near zero overhead
● Challenges:

○ Large runtime overhead. Intel Thread Checker has 200x overhead
○ Complex synchronization semantics: Synchronizations can be complex. Can result in false

data races.
○ Recording the state of the program is expensive for logging methods

DataCollider: near zero overhead
● Key ideas:

○ Use random sampling for accesses as data race candidates. User controlled overhead.

● Algorithm:
○ Randomly sprinkle code breakpoints on memory accesses
○ When a breakpoint fires at an access to x, delay for a small time window
○ Read x before and after the time window
○ Ensure a user-defined # of code breakpoint firings/s

● Sampling
○ Trade-off: overhead vs likelihood of finding a data race

DataCollider: near zero overhead

DataCollider: near zero overhead
● Puts the user in control of the overhead
● Incapable of false data races
● Trivial to implement, requires no knowledge of synchronization methods
● Provides full debugging information

References
1. Kahlon, V., Yang, Y., Sankaranarayanan, S., Gupta, A. (2007). Fast and Accurate Static Data-Race Detection for

Concurrent Programs. In: Damm, W., Hermanns, H. (eds) Computer Aided Verification. CAV 2007. Lecture Notes in
Computer Science, vol 4590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73368-3_26

2. Pozniansky, Eli, and Assaf Schuster. "MultiRace: efficient on‐the‐fly data race detection in multithreaded C++
programs." Concurrency and Computation: Practice and Experience 19.3 (2007): 327-340.

3. Erickson, John, et al. "Effective Data-Race Detection for the Kernel." 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10). 2010.

4. Erickson, John, et al. “Dynamic Analyses for Data Race Detection.” [Slideshow]. Microsoft.

https://doi.org/10.1007/978-3-540-73368-3_26

